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ABSTRACT
When interacting with social tagging systems, humans exercise
complex processes of categorization that have been the topic of
much research in cognitive science. In this paper we present a
recommender approach for social tags derived from ALCOVE, a
model of human category learning. The basic architecture is a sim-
ple three-layers connectionist model. The input layer encodes pat-
terns of semantic features of a user-specific resource, such as la-
tent topics elicited through Latent Dirichlet Allocation (LDA) or
available external categories. The hidden layer categorizes the re-
source by matching the encoded pattern against already learned ex-
emplar patterns. The latter are composed of unique feature patterns
and associated tag distributions. Finally, the output layer samples
tags from the associated tag distributions to verbalize the preced-
ing categorization process. We have evaluated this approach on
a real-world folksonomy gathered from Wikipedia bookmarks in
Delicious. In the experiment our approach outperformed LDA, a
well-established algorithm. We attribute this to the fact that our ap-
proach processes semantic information (either latent topics or ex-
ternal categories) across the three different layers. With this paper,
we demonstrate that a theoretically guided design of algorithms not
only holds potential for improving existing recommendation mech-
anisms, but it also allows us to derive more generalizable insights
about how human information interaction on the Web is determined
by both semantic and verbal processes.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
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1. INTRODUCTION
There is now broad agreement that in order to support users in

tagging resources on the Web, a good understanding of the mech-
anisms that underlie human tagging behavior is advantageous [4,
6]. Based on models of information theory [6] and human memory
theory [4] generative models of social tagging have been developed
providing much insight into the emergence of the data observed in
social tagging systems. The generative models implement cogni-
tive assumptions about human information processing and provide
computational models that predict a tag distribution. Comparing
the theoretical to the empirical tag distribution then allows making
claims about the validity of the underlying cognitive assumptions.
A stricter test of theoretical claims can be provided by controlled
experiments as these allow for testing causal relationships more di-
rectly. Such studies have been conducted, for instance, by Fu et al.
[4] to test the semantic imitation model of social tagging, by Cress
et al. [3] to test a social variant of information foraging theory, as
well as by our own group to find evidence for a dual-process mem-
ory mechanism [22]. These studies, on the other hand, have limi-
tations as they need to necessarily control the setting in which they
are conducted. To generalize findings from these lab settings to
naturally occurring tagging behavior, the models need to be tested
in real-life settings. In this paper, we have devised a recommender
mechanism which implements some basic mechanisms of human
categorization that is assumed to take place in social tagging envi-
ronments. When contrasting predicted with observed tag choices,
this provides validation of the underlying model. Additionally, this
approach allows several algorithms and their underlying models to
be compared to each other.

The contributions of the paper are threefold: (1) We present a
novel tag recommendation mechanism that is based on psycholin-
guistic models of categorization and speech production, (2) We
demonstrate that such a recommendation mechanism performs sig-
nificantly better than a standard tag recommendation approach such
as LDA, and (3) We demonstrate that a theoretically guided design
of a recommender complements data-driven approaches in that it
allows for learning something about how humans process informa-
tion in sensemaking tasks on the Web.
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The remainder of the paper is structured as follows: In Section 2
we discuss related work and in Section 3 we present our new ap-
proach. In Section 4 we shortly introduce our experiments and the
used dataset. Section 5 presents the results of our study. Section 6
concludes the paper and discusses our findings in light of the ben-
efits of connecting data-driven and theory-driven research for rec-
ommender systems research. Finally, Section 7 outlines future re-
search directions.

2. RELATED WORK
In contrast to the research on generative models of social tag-

ging mentioned above, recommender systems research has taken a
more pragmatist stance, such as helping users discover useful re-
sources on the Web, or improving the overall tag consistency. One
of those approaches that have been very successful in predicting
and recommending tags for Web resources has been collaborative
filtering [7]. The first work describing such a mechanism for the
domain of collaborative tagging systems is the work of Xu et al.
[25] who introduce a simple tag co-occurrance approach to rec-
ommend tags to a user. Sigurbjornsson et al. [24] developed a
similar approach and showed for the photo tagging system Flickr
that it is “essential to take the co-occurance values of the candi-
date tags into account when aggregating the intermediate results in
a ranked list of recommended tags”. Hotho et al. [9] presented
an algorithm called FolkRank which uses the structure of folk-
sonomies for searching and ranking. These rankings can also be
used to recommend tags, resources and users or to build commu-
nities of interest from the folksonomy. In [10] Jaschke et al. ex-
tended FolkRank to design a graph-based tag recommendation al-
gorithm on top of it and compared it to collaborative filtering based
on users, where they achieved better recall and precision values.
Another interesting contribution to tag recommender systems was
made by Lipczak and Milios [18] who introduced a novel scalable
and adoptable system, which can recommend tags based on the re-
source’s title and content and the user’s profile and which allows to
learn new tags efficiently. Rendle et al. introduced a factorization
model PITF (Pairwise Interaction Tensor Factorization) with linear
runtime for both learning and recommending tags [21]. Similarly
to the work of Lipczak and Milios [18] they addressed the prob-
lem of the cubic runtime of Tensor Factorization approaches which
have been shown to outperform for instance other tag recommender
algorithms such as FolkRank, collaborative filtering, etc. One of
the first extensive studies of the tag prediction problem from the
rule-mining perspective was performed by Heyman et al. [8], who
achieved high-precision results in a number of experiments using
tags from the social tagging system Delicious. In a follow-up,
Krestel et al. [13]. tested the use of recommending tags in LDA
and showed that it delivered significantly better results than the as-
sociation rules. In [12], they enhanced the performance of LDA
by combining it with simple language models based on the most
frequent tags of the users and the resources in the bookmarks.

Although these methods of finding algorithms to accurately pre-
dict historical user-interaction data are rather efficient, they often
lack theoretical background in the cognitive processes that lead to
the data that is being predicted. By applying formal models of
human semantic memory, the new recommender presented in the
next section complements the above-mentioned recommender sys-
tems and integrates current cognitive science results into the rec-
ommender systems for social tagging.

txout%

Ranked%tags%txout%

Input Layer
Encoding user
and resource
information

Hidden Layer
Categorization and 

Formalization

au
in = (0.04,0.24,...,0.01,0.00)

Step 2: Formalization - Multiplying
aj
hid by wtj

Step 3: Summing products (wtj*aj
hid)

over all exemplars

Step 4: Articulation - Simulating Tag-Choices
by drawing tags from rank-tx

out distribution

a8
hid

topic pattern h6 
of example e6

activation of e6

tags' associative
weights with 
respect to e6 

Output Layer
Articulation

h8 of example e8

activation of e8

associative
weights with 
respect to e8 

19

2

16

8

11

171

7

4

13

5

15

10

3

18
14

12

6

9

19

2

16

8

11

171

7

4

13

5

15

10

3

18
14

12

6

9

ar
in = (0.04,0.24,...,0.01,0.00)

a6
hid

a3
hid

a5
hid

a4
hid

a2
hid

a1
hid

a7
hid

wt8"

tags&tx&

wt6"

tags&tx&

Step 1: Categorization - Matching 
input 

against stored examples

Figure 1: Basic architecture of 3Layers (Note that only two
of the six exemplars at the hidden layer are illustrated com-
pletely).

3. APPROACH
Our theoretical focus is on formal memory models explaining

word (re-)productions and hence, psycholinguistic processes that
we deem to be in play during tag assignments and tag imitations.
A number of prominent memory models assume word productions
to proceed in different steps on distinct levels of memory. For in-
stance, the Fuzzy Trace Theory (FTT, [2]) postulates an activation
of a gist-trace in response to a stimulus, e.g. a Web-resource or a
set of associated tags, which contains semantic aspects (concepts,
relations, patterns) of the stimulus. The gist-trace in turn recon-
structs several, semantically related word forms verbalizing the ac-
tivated gist. By means of a Markov model derived from FTT, [22]
showed that a substantial amount of tag productions can indeed be
predicted by a two-step memory retrieval involving both gist-based
and verbal processes.

Similarly to FTT, the psycholinguistic theory of Levelt et al.
[16] distinguishes between three processes during the production
of words: 1) Categorization (resulting in a message or gist to be
articulated), 2) Formalization (accessing the mental lexicon to ac-
tivate word forms corresponding to the categorization) and 3) Ar-
ticulation (selecting and producing appropriate word forms). The
recommender presented here is called 3Layers and is in line with
this proposed translation of latent structures into words. We as-
sume a set of tagged resources, which are at the same time assigned
to a category. These categories (hereinafter called "semantic fea-
tures") are either given a-priori (e.g. because a page is categorized
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to a wikipedia category) or are derived as LDA topics [5] from the
tag assignments. The recommender starts with categorizing a user-
specific resource by encoding and processing semantic features true
for the user and/or resource, then formalizes the categorization by
identifying tag distributions associated with the resource’s semantic
features and finally, articulates tags by sampling the most appropri-
ate tags from the identified tag distributions.

3Layers is based on ALCOVE [14, 15], a formal model of hu-
man category learning. The basic architecture is a feed-forward
connectionist network consisting of three layers of nodes realizing
a top-down pattern completion process by means of straightforward
equations. In response to semantic information on the input layer
(two patterns of LDA-topics or external categories, one characteriz-
ing a user and one a specific resource), the hidden layer categorizes
and formalizes the resource by calculating the input’s similarity to
already stored exemplars that are unique topic (or category) pat-
terns and associated tag distributions. Finally, the output layer ar-
ticulates the preceding categorization and formalization processes
by sampling tags from the tag distributions of the identified, similar
exemplars.

On the input layer, there are two input vectors representing se-
mantic features that are true for the user u, ain

u

, and the resource
r, a

in

r

. Within each vector, each of the N nodes represents a sin-
gle semantic feature f

i

(in our case a topic identified by LDA or a
category). Its activation (denoted a

in

i

) indicates the extent to which
that feature applies to the user, ain

iu

, and resource in question, ain

ir

.
a

in

iu

is given by

a

in

iu

=
c(f

i

, u)
P

N

j=i

c(f
j

, u)
(1)

where c(f
i

, u) represents the counted frequency of the semantic
feature in the user’s personomy (i.e., her or his bookmark collec-
tion). Correspondingly, ain

ir

represents the association of the se-
mantic feature to the resource and is estimated in a similar way
from the counted frequency of the feature f

i

in all bookmarks of the
resource r, c(f

i

, r). The activations across the N input nodes con-
stitute the vectors ain

u

= (ain

1u, a
in

2u, ..., a
in

Nu

) and a

in

r

= (ain

1r, a
in

2r, ...

, a

in

Nr

). In Figure 1, the left semantic feature pattern at the input
layer corresponds to the input vector ain

u

= (.04, .24, ..., .01, .00)
indicating that, for instance, the topics/categories 1 and 2 have the
relative frequencies .04 and .24, respectively, across the user u’s
personomy.

The nodes on the hidden layer store information about exem-
plars e

j

extracted from the training set, that is all previous tag as-
signments of that user. Figure 1 illustrates two such exemplars (e6
and e8) that are composed of unique, semantic feature patterns, h

j

= (h
j1, hj2, ..., hjN

), and associative weights w

tj

. The latter are
maintained between each of all m tags t and the unique feature pat-
tern h

j

and are illustrated in form of diagrams plotting the weights
against the tags. The estimates of each h

ji

in h

j

are calculated in
a similar way as the activation of each input feature (either ain

iu

or
a

in

ir

), and the associative weight w
tj

encodes the relative frequency
of each tag t in e

i

and is estimated as

w

in

tj

=
c(t, e

j

)P
k2ej

c(t
k

, e

j

)
(2)

where c(t, e
j

) is the counted frequency of tag t in exemplar e
j

.
Step 1 in Figure 1 is based on a simple pattern matching process

and results in probability estimates of each exemplar. To perform it,
we firstly calculate the distance of a given exemplar e

j

to the input
vectors ain

u

and a

in

r

, denoted d

u

j

and d

r

j

, respectively, by applying

the cosine similarity measure and subtracting the result from 1, i.e.,

d

u

j

= 1� hain

u

, h

j

i
kain

u

kkh
j

k (3)

Correspondingly, dr
j

is calculated by subtracting the similarity
between a

in

r

and h

j

from 1. The distances are linearly combined
to a single distance, which is then transformed to an activation (or
similarity) estimate ahid

j

falling exponentially with the distance be-
tween the hidden node and the input [23], and yielding a probability
estimate for e

j

:

a

hid

j

=
exp[�(du

j

+ d

r

j

)]P
k

exp[�(du
k

+ d

r

k

)]
(4)

For example, the Figure 1 schematically illustrates that e6 re-
ceives higher activation than e8 (illustrated by the black- and grey-
filled rhombic form, respectively) since e6’s topic pattern h6 is
more similar to both input vectors ain

u

and a

in

r

than e8’s topic pat-
tern h8.

We then form response strengths for each of the tags, tout
x

. In
step 2 (see Figure 1), each hidden node’s activation a

hid

j

is multi-
plied by the corresponding tags’ associative weights, i.e., ahid

j

·w
tj

,
and in step 3, these products are summed over all hidden nodes,
given by

t

out

x

=
X

j

wt

j

· ahid

j

(5)

where each t

out

x

is a realization of a discrete random variable X

since
P

m

x

Pr(X = t

out

x

) = 1 .
In a last step 4, we make use of this probability distribution to

simulate the user’s tag assignments by drawing y random numbers
and mapping them into events, i.e. tout

x

. Finally, the observed count
of tag t

x

in the simulation, c(t
x

), determines its ranking for being
recommended. If the parameter l specifies the number of tags to be
selected, the subset of tags to be recommended RecTags is given
by

RecTags := {t
x

|rank[c(t
x

)]  l} (6)

4. EXPERIMENTAL SETUP
In order to evaluate our approach, we compared it with a popular

tag recommendation approach based on Latent Dirichlet Allocation
[12, 13].

Latent Dirichlet Allocation (LDA) is a probability model that
helps to find latent topics for documents where each topic is de-
scribed by words in these documents [13]. This can be formalized
as follows:

P (t
i

|d) =
ZX

j=1

P (t
i

|z
i

= j)P (z
i

= j|d) (7)

Here P (t
i

|d) is the probability of the ith word for a document
d and P (t

i

|z
i

= j) is the probability of t

i

within the topic z

i

.
P (z

i

= j|d) is the probability of using a word from topic z

i

in the
document. In LDA the number of latent topics Z has to be chosen
in advance, which defines the level of specialization of the topics.

When using LDA for tag recommendation, documents are re-
sources which are described by tags. This means that each resource,
or more specified each bookmark of a resource, can also be repre-
sented with the top tags of topics identified by LDA.

We implemented the LDA tag recommendation algorithm with
Gibbs sampling using the Java framework LingPipe1. Therefore we
1http://alias-i.com/lingpipe/
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Figure 2: Recall/precision plots for LDA with 24 topics, LDA
with 500 topics, 3Layers with Wikipedia categories and 3 Lay-
ers with LDA tags on 1 - 10 recommended tags.

calculated the probability of a tag t P (t|r, u) based on a given user
u P (t|u) and based on a given resource r P (t|r) and combined
these two values based on the smoothing technique described by
Krestel and Frankhauser [12]. This ensures that the two probabili-
ties are weighted according to their importance and that no tag gets
a probability value of 0.

4.1 Dataset
For our experimentation we used a large-scale social tagging

dataset crawled from Delicious2 and provided by Arkaitz et al.
[26]. It was crawled between 2003 and March 2011 and contains
nearly 340 million bookmarks, 119 million unique resources, 15
million unique tags and 2 million unique users. To obtain a dataset
where all resources are categorized and freely available, we parsed
out all bookmarks of Wikipedia3 articles, which resulted in 1.7 mil-
lion bookmarks, 386 thousand unique resources, 361 thousand tags,
304 thousand unique users and 4.9 million tag assignments. This
focus on the Wikipedia domain gives us not only the possibility to
test our approach with external knowledge such as category infor-
mation, but also increases the reproducibility of our experiments.
In order to get a dense fraction of the dataset we used a p-core prun-
ing technique as proposed by Batagelj and Zaversnik [1]. The final
dataset we used for our experiments was a p-core pruned dataset at
level 14 and contained 49,691 bookmarks, 2,003 unique resources,
1685 unique tags, 1,968 unique users and 194,584 tag assignments.

In order to extend the resources in our dataset with semantic fea-
tures that can be used as external knowledge for the input layer of
our approach, we fetched the category information of the Wikipedia
articles from that time latest Wikipedia dump4. Since the articles
categories are very specific, we only focused on the 24 Wikipedia
top-level categories for each article obtained from the Wikipedia
category-taxonomy that we created according to [19].

4.2 Evaluation Method and Metrics
To evaluate the performance of our tag recommender approach

we used a 80/20 split to randomly generate 20 different training
and test sets. The bookmarks in a training set were used as the
input for the algorithms to predict the tags of the bookmarks in the
corresponding test set [13].

As evaluation metrics we used different well-established metrics
for tag recommendations in order to obtain the performance of our
2https://delicious.com/
3http://en.wikipedia.org/
4http://dumps.wikimedia.org/enwiki/20121101/
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Figure 3: F1-score values for LDA with 24 topics, LDA with
500 topics, 3Layers with Wikipedia categories and 3Layers with
LDA tags on 1 - 10 recommended tags.

approach compared to LDA [10, 17]. All these metrics are reported
for different numbers of recommended tags (1 - 10) and as an aver-
age over our 20 training and test sets.

Recall is calculated as the number of correctly recommended
tags divided by the number of relevant tags, where t

u

denotes the
list of recommended tags and T

u

the list of relevant tags of a book-
mark of user u. This is averaged on all known bookmarks U .

Recall =
1
|U |

X

u2U

|t
u

\ T

u

|
|T

u

| (8)

Precision is calculated as the number of correctly recommended
tags divided by the number of recommended tags.

Precision =
1
|U |

X

u2U

|t
u

\ T

u

|
|t
u

| (9)

F1-score combines precision and recall into one score [17].

F1� score = 2⇥ Precision⇥Recall

Precision+Recall

(10)

Mean reciprocal rank (MRR) is the sum of the reciprocal ranks
of all relevant tags in the list of the recommended tags. This means
that a higher MRR is achieved if the relevant tags occur at the be-
ginning of the recommended tag list [20].

MRR =
1
|U |

|U|X

u=1

(
X

t2Tu

1
rank(t)

) (11)

Mean average precision (MAP) is an extension of the precision
metric that also looks on the ranking of the recommended tags. It is
described in the formula below where B

n

is 1 if the recommended
tag at position n is relevant [20].

MAP =
1
|U |

|U|X

u=1

(
1

|T
u

|

|Tu|X

n=1

B

n

⇥ Precision@n) (12)

5. RESULTS
In this section we present the results of our approach compared

to LDA based on the previously mentioned evaluation metrics and
the Wikipedia dataset.

As reported in Section 4, the number of latent topics for LDA
has to be set in advance. When generating recommendations for 24
(corresponding to the number of top-level categories in Wikipedia),
100, 250, 500, 750 and 1000 topics based on 10 recommended tags,
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Algorithm MRR±STD MAP±STD
LDA 24 .662±.014 .240±.005
LDA 500 .862±.015 .345±.007
3Layers-Categories .940±.007 .391±.003
3Layers-LDA 500 1.200±.005 .549±.002

Table 1: MRR and MAP values with standard deviations
for LDA with 24 topics, LDA with 500 topics, 3Layers with
Wikipedia categories and 3Layers with LDA tags on 10 recom-
mended tags.

we found that 500 topics produced the best results (MRR = .862 and
MAP = .345). We therefore configured our 3Layers approach with
two different data sources for its input layer, (i) Wikipedia’s 24 top-
level categories as described in Section 4.1 and (ii) tags based on
LDA with 24 (corresponding to the 24 Wikipedia categories) and
500 topics. For the second configuration we used the top 10 tags
identified by LDA for each bookmark in the training set.

Figure 2 shows the recall/precision plot for LDA with 24 top-
ics, LDA with 500 topics, 3Layers with Wikipedia categories and
3Layers with LDA tags calculated for 500 topics on 1 - 10 recom-
mended tags. LDA with 24 topics is used here as a simple baseline
based on the number of top-level categories in Wikipedia. Fur-
thermore, Figure 3 also shows the F1-score values for these algo-
rithms on 1 - 10 recommended tags. It can bee seen that both 3Lay-
ers approaches outperform LDA on all values where the maximum
values are reached for recall@10 = .758, precision@1 = .646 and
F1-score@4 = .426 for 3Layers with LDA tags identified for 500
topics.

The MRR and MAP values with standard deviations are shown
in Table 1 for all the algorithms on 10 recommended tags. Also on
these metrics the two 3Layers approaches outperforms LDA on all
values. The maximum values are reached by 3Layers with LDA
tags based on 500 topics for MRR = 1.200 and MAP = .549 (visu-
alized in bold). These estimates clearly imply that independent of
the measure the probability estimates vary with the conditions, i.e.
the tag recommenders, in a constant ordering.

To check for statistical significance we performed two one-way
ANOVAs on MRR and MAP for 10 recommended tags with Al-
gorithm as a between-subjects factor. The statistical prerequisites
of normal distribution and equal variances were met. The results of
both ANOVAs are shown in Table 2 and are well in line with the de-
scriptive pattern of Table 1. In particular, the overall difference be-
tween the four recommenders proved highly significant and yielded
the large effect sizes of ⌘2

MRR

= .997 and ⌘

2
MAP

= .998. Addi-
tionally, pairwise comparisons conducted by means of the Tukey’s
HSD test corresponded to the ordering described above. First, the
difference between the two best performing recommenders, i.e. 3Lay-
ers-LDA 500 and 3Layers-Categories (MRR: q = 55.38, p < .001;
MAP: q = 64.56, p < .001), second, the difference between 3Lay-
ers-Categories and LDA 500 (MRR: q = 21.73, p < .001; MAP: q
= 28.05, p < .001) and third, the difference between LDA 500 and
LDA 24 (MRR: q = 71.88, p < .001; MAP: q = 97.29, p < .001) all
proved large and highly significant.

6. DISCUSSION AND CONCLUSION
In this paper we have presented and evaluated 3Layers, a model

of human categorization implemented in form of a tag recommender.
The model takes into account semantic information about a user-
specific bookmark, which is either a set of available Wikipedia cat-
egories or a set of topics derived by LDA. The semantic information
is further processed in a connectionist network of three layers that

Metric Source SS DF MS F p-value
MRR between groups 2.971 3 .990 7,610 <.001

within groups .009 76 .0001
TOTAL 2.982 79

MAP between groups .993 3 .331 12,514 <.001
within groups .002 76 2.645E-5
TOTAL .995 79

Table 2: Summary of one-way ANOVA for MRR and MAP on
10 recommended tags with Algorithm as the between-subjects
factor.

mimics the user’s categorization and formalization of the bookmark
to predict the user’s tag assignments. We think this has introduced
some new perspectives into recommender systems research for so-
cial tagging environments.

Our experiments show that the 3Layers-model holds potential of
realizing a strongly performing recommender system. In partic-
ular, 3Layers-LDA that utilizes LDA-topics as input significantly
outperforms the LDA-recommender introduced by [13]. The same
applies to 3Layers-Categories, which makes use of Wikipedia cate-
gories and therefore, operates independently of the LDA-approach.

Of course, several limitations of these results need to be ad-
dressed. As we have only tested the performance in one data set,
generalizability to other cases needs to be demonstrated. Also with-
out a doubt, there is nowadays a much larger set of recommender
algorithms available than we could take into account in our study.

We take the results as a promising outcome. First of all, the
processing of semantic categories (either explicitly given, or la-
tent) can alleviate the cold start problem that other approaches are
suffering from (such as Collaborative Filtering or those based on
popularity, for instance). Reliance on these categories should also
improve the robustness as the algorithm does not only depend on
word-level imitation but takes into account shared semantic inter-
pretations (e.g. [4]).

Additionally, our approach significantly enhances the LDA-rec-
ommender [13, 12] by further operating on the identified latent
topic patterns. We attribute the latter result to the calculation steps
of formalization where prior tag distributions are weighted accord-
ing to the preceding categorization steps. The result is a distri-
bution at the output layer exhibiting fewer ties and allowing for a
more accurate selection of relevant tags. Therefore, our approach
provides an appropriate theoretical framework and an effective rec-
ommender that integrates top-down and bottom-up generated data.

Our approach therefore should transfer well to other related Web
interaction paradigms where both top down classification systems
and bottom-up categorization co-exist. For example, Web cura-
tion is a recent trend in which Web users can create collections of
resources and share these collections with others. These usually
employ mechanisms of social bookmarking and tagging, but also
employ classification systems to which collections are assigned.

With Web interaction paradigms changing quickly, a purely data-
driven strategy has its limitations, as the data sets produced within
them may differ considerably. It is then more difficult to under-
stand, why certain approaches perform very well in certain datasets,
but not very well in others. The reason is that datasets are products
of very complex processes [6] and they depend on a number of
factors that the models would need to take into account. While the
datasets will look different, many of the fundamental processes that
underlie the interaction in these new environments (such as human
categorization or language production) will be very similar. Hence,
the danger of a predominantly data-driven research strategy is that
with every new paradigm, we have to start from zero as the ear-
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lier algorithms are not directly transferable. With the current work,
we have demonstrated how a connection between a data-driven and
theory-driven approach can be realized when the algorithms imple-
ment well-founded theories of cognitive science.

7. FUTURE WORK
In future work we will address the previously mentioned issues

by testing the recommender mechanism in other tagging datasets as
well as with other Web interaction paradigms, such as Web cura-
tion. Additionally, we will compare 3Layers’ performance to other
well-established approaches, such as FolkRank [9] or Collaborative
Filtering [25]. A distinctive benefit of our theory-driven approach
in designing tag recommendation mechanisms is that it opens up
fruitful directions for future research. For instance, we hypothe-
size that our approach relates to the distinction of categorizers and
describers that was introduced in [11] to explain different tagging
motivations. We suspect that 3Layers will especially work well for
the categorizers who draw on a more refined system on personal
categories when assigning tags.
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