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ABSTRACT
POI (point of interest) recommender systems for location-
based social network services, such as Foursquare or Yelp,
have gained tremendous popularity in the past few years.
Much work has been dedicated into improving recommenda-
tion services in such systems by integrating different features
that are assumed to have an impact on people’s preferences
for POIs, such as time and geolocation. Yet, little atten-
tion has been paid to the impact of weather on the users’
final decision to visit a recommended POI. In this paper we
contribute to this area of research by presenting the first
results of a study that aims to predict the POIs that users
will visit based on weather data. To this end, we extend the
state-of-the-art Rank-GeoFM POI recommender algorithm
with additional weather-related features, such as tempera-
ture, cloud cover, humidity and precipitation intensity. We
show that using weather data not only significantly increases
the recommendation accuracy in comparison to the origi-
nal algorithm, but also outperforms its time-based variant.
Furthermore, we present the magnitude of impact of each
feature on the recommendation quality, showing the need to
study the weather context in more detail in the light of POI
recommendation systems.

Keywords
POI Recommender Systems; Location-based services; Weather-
Context

1. INTRODUCTION
Location-based social networks (LBSN) enable users to

check-in and share places and relevant content, such as pho-
tos, tips and comments that help other users in exploring
novel and interesting places in which they might not have
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been before. Foursquare1, for example, is a popular LBSN
with millions of subscribers doing millions of check-ins every-
day all over the world2. This vast amount of check-in data,
publicly available through Foursquare’s data access APIs,
has recently inspired many researchers to investigate human
mobility patterns and behaviors with the aim of assisting
users by means of personalized POI (points of interest) rec-
ommendation services [15,16].

Problem Statement. The problem we address in this
paper is the POI recommendation problem. Hence, given
a user u and her check-in history Lu, i.e., the POIs that
she has visited in the past, and current weather conditions
C = {c1, . . . , c|C|}, where ci are weather features such as
temperature, wind speed, pressure, etc., we want to predict
the POIs L̂u = {l1, . . . , l|L|} that she will likely visit in the
future that are not in Lu.
Objective. Most of the existing approaches on POI rec-

ommendation exploit three main factors (aka contexts) of
the data, namely, social, time and geolocation [5, 10, 15].
While these approaches work reasonably well, little atten-
tion has been paid to weather, a factor that may potentially
have a major impact on users’ decisions about visiting a POI
or not. For example, if it is raining in a certain period of
time and place, the user may prefer to check-in indoor POIs.

In this paper we contribute to this area of research by
presenting the first results of a recently started project that
exploits weather data to predict, for a given user within a
given city, the POIs that she will likely visit in the future.
To this end, we extract several weather features based on
data collected from forecast.io such as temperature, cloud
cover, humidity or precipitation intensity, and feed it into
a state-of-the-art POI recommender algorithm called Rank-
GeoFM [10].

Research Questions. To drive our research the follow-
ing three research question were defined:

• RQ1. Do weather conditions have a relation with the
check-in behaviour of Foursquare users?

• RQ2. Is it possible to improve current POI recom-
mendation quality using these weather features?

• RQ3. Which weather features provide the highest im-
pact on the recommendations?

Contributions. To the best of our knowledge, this is the
first paper that investigates in detail the extent to which

1https://foursquare.com/
2https://foursquare.com/infographics/10million



City #Check-Ins #Venues #Users Sparsity
Minneapolis 37,737 797 436 89.1%

Boston 42,956 1141 637 94.3%
Miami 29,222 796 410 91.0%

Honolulu 16,042 410 173 77.4%

Table 1: Basic statistics of the dataset.

weather features such as temperature, cloud cover, humid-
ity or precipitation intensity have an impact on users’ check-
in behaviors and how these features perform in the context
of POI recommender systems. Although there is literature
showing that POI recommender systems can be improved
by using some kind of weather context such as e.g. temper-
ature, it is not clear yet, how much they add or what type
of weather feature is the most useful or maybe least useful
one. Another contribution of this paper is the introduc-
tion of a weather-aware recommender method that builds
upon a very strong state-of-the-art POI recommender sys-
tem called Rank-GeoFM. The method is implemented and
embedded into the very popular recommender framework
MyMediaLite [7] and can be downloaded for free from our
GitHub repository, details in Section 8.

Outline. The structure of this paper is as follows: In Sec-
tion 2 we highlight relevant related work in the field. Sec-
tion 3 describes how we enriched Rank-GeoFM with weather
data. Section 4 describes the experimental setup and presents
results from our empirical analysis. Section 5 presents in-
sights on the results obtained with our weather-aware rec-
ommender approach. Finally, Sections 6 and 7 conclude the
paper, with a summary of our main findings and future di-
rections of the work.

2. RELATED WORK
With the advent of LBSNs, POI recommendation rapidly

became an active area of research within the recommender
systems, machine learning and GIS research communities [2].
Most of the existing research works in this area exploit some
sort of combination between (some or all) of the following
data sources: check-in history, social (e.g. friendship rela-
tions), time and geolocations [1,5,6,8,10,13,15]. While these
different sources of data (aka contexts) affect the user’s deci-
sion on visiting a POI in different ways, weather data, which
according to common sense may have a great influence on
this decision, they are still rarely used.

Martin et al. [11] proposed a mobile application which
architecture considered the use of weather data to person-
alize a geocoding mobile service, but no implementation or
evaluation was presented. A similar contribution was done
by Meehan et al. [12], who proposed a hybrid recommender
system based on time, weather and media sentiment when
introducing the VISIT mobile tourism recommender, but
they neither implemented nor evaluated it.

Among the few works that have actually used weather into
the recommendation pipeline, Braunhofer et al. [3] intro-
duced a recommender system designed to run in mobile ap-
plications for recommending touristic POIs in Italy. The au-
thors conducted an online study with 54 users and found out
that recommendations that take into consideration weather
information were indeed able to increase the user satisfac-
tion. Compared to this work, our implementation is based
in a more recent and state-of-the-art algorithm, and we
also provide details of which weather features contribute
the most to the recommender performance. In an exten-

Sym. Description
U set of users u1, u2, ..., u|U|
L set of POIs l1, l2, ..., l|L|
FCf set of classes for feature f
F set of weather feature classes f1, f2, ..., f|FCf |
Θ latent model parameters containing the learned weights

{L(1), L(2), L(3), U(1), U(2), F (1)} for locations, users and
weather features.

Xul |U | × |L| matrix containing the check-ins of users at POIs.
Xulc |U | × |L| × |FCf | matrix containing the check-ins of users at

POIs at a specific feature class c.
D1 user-POI pairs: (u, l)|xul > 0.
D2 user-POI-feature class triples: (u, l, c)|xulc > 0.
W geographical probability matrix of size |L|x|L| where wll′

contains the probability of l′ being visited after l has been
visited according to their geographical distance. wll′ = (0.5+

d(l, l′))−1) where d(l, l′) is the geographical distance between
the latitude and longitude of l and l′.

WI probability that a weather feature class c is influenced by

feature class c′. wicc′ = cos sim(c, c′).
Nk(l) set of k nearest neighbors of POI l.
yul the recommendation score of user u and POI l.
yulc the recommendation score of user u, POI l and weather fea-

ture class c.
I(·) indicator function returning I(a) = 1 when a is true and 0

otherwise.
ε margin to soften ranking incompatibility.
γw learning rate for updates on weather latent parameters.
γg learning rate for updates on latent parameters from base ap-

proach.
E(·) a function that turns the rating incompatibility

Incomp(yulc, ε), that counts the number of locations
l′ ∈ L that should be ranked lower than l at the current
weather context c and user u but are ranked higher by the
model, into a loss E(r) =

∑r
i=1

1
i .

δucll′ function to approximate the indicator function with a contin-

uous sigmoid function s(a) = 1
1+exp(−a)

. δucll′ = s(yul′c +

ε− yulc)(1− s(yul′c + ε− yulc))

b |L|n c if the nth location l′ was ranked incorrect by the model the

expactation is that overall b |L|n c locations are ranked incor-
rect.

g, µ auxiliary variable that save partial results of the calculation
of the stochastic gradient.

Table 2: The notations used to describe Rank-GeoFM and
the incorporation of the weather context.

sion of their initial work, Braunhofer et al. [4] implemented
and evaluated a context-aware recommender system which
uses weather data. They find that the model which lever-
ages the weather context outperformed the version without
it. Although more similar to our current work, they did not
provide a detailed feature analysis as the present article.

In summary, compared to previous works which have used
weather as a contextual factor for recommendation systems,
we provide detailed information about our recommendation
algorithm and we contribute an implementation extending
a state-of-the-art matrix factorization model exploiting rich
weather data. Moreover, we also provide details on how the
weather features were exploited by it, as well as a detailed
analysis about the impact of the features on the recommen-
dation quality.

3. RECOMMENDATION APPROACH
Our recommendation approach is built upon a state-of-

the-art POI recommender algorithm named Rank-GeoFM
[10], a personalized ranking based matrix factorization method.
We have selected Rank-GeoFM over other alternatives be-
cause it has been shown to be a very strong POI recom-
mender method compared to other approaches often cited



Algorithm 1: Rank-GeoFM with weather context

Input: check-in data D1, D2, geographical influence matrix
W , weather influence matrix WI, hyperparameters
ε, C, α, β and learning rate γg and γw

Output: parameters of the model
Θ = {L(1), L(2), L(3), U(1), U(2), F}

1 init: Initialize Θ with N (0, 0.01); Shuffle D1 and D2

randomly
2 repeat
3 for (u, l) ∈ D1 do
4 approach from Li et al. [10]
5 end
6 for (u, l, c) ∈ D2 do
7 Compute yulc as Equation 3 and set n = 0
8 repeat
9 Sample l′ and c′, Compute yul′c′ as

Equation 3
10 n++

11 until I(xulc > xul′c′ )I(yulc < yul′c′ + ε) = 1
or n > |L|

12 if I(xulc > xul′c′ )I(yulc < yul′c′ + ε) = 1
then

13 η = E
(⌊
|L|
n

⌋)
δucll′

14 g =(∑
c∗∈FCf

wic′c∗f
(1)
c∗ −

∑
c+∈FCf

wicc+f
(1)
c+

)
15 f

(1)
c ← f

(1)
c − γwη(l

(2)
l′ − l

(2)
l )

16 l
(3)
l ← l

(3)
l − γwηg

17 l
(2)
l′ ← l

(2)
l′ − γwηfc

18 l
(2)
l ← l

(2)
l + γwηfc

19 end
20 Project updated factors to accomplish

constraints
21 end
22 until convergence

23 return Θ = {L(1), L(2), L(3), U(1), U(2), F (1)}

in the literature. In Li et al. [10] the authors compared
Rank-GeoFM against twelve other recommender methods,
showing that Rank-GeoFM significantly outperforms strong
generic baselines, such as user-KNN, item-KNN CF, WRMF,
BPR-MF [7] as well as specialized POI recommender meth-
ods, such as BPP [17]. Another reason for choosing Rank-
GeoFM is related to its ability to easily accommodate ad-
ditional features that we plan to use in this work. The aim
of Rank-GeoFM is to learn latent parameters that model
the relationship between the context of interest (in our case
weather conditions) and the user/POI.

Table 2 describes the symbols used in the recommender
algorithm. For each type of contextual data considered, la-
tent model parameters are introduced. The prediction of
a <user, POI, context> triple is then made based on this
learned latent parameters. The parameters are trained us-
ing a fast learning scheme introduced by the authors that is
based on Stochastic Gradient Descent (SGD).

To add the weather context into Rank-GeoFM, the weather
features’ values needed to be discretized. This was done to
reduce data sparsity. For example, if we considered tem-
perature as a real number, most of the check-ins concerning
specific temperature values would probably be zero. Thus,
transforming continuous values of weather features (e.g.,
temperature) into intervals might alleviate this problem.
Hence, a mapping function is introduced (see Equation 1)

that converts the weather features into interval bins. |FCf |
defines the size of the bin for the current weather feature.
We will refer to these bins as feature classes. Best results
were obtained with |FCf | = 20 (validated on held-out data).

cf (value) =

⌊
(value−min(f)) · (|FCf | − 1)

(max(f)−min(f))

⌋
(1)

To extend the original Rank-GeoFM approach with weather
context, three additional latent factors are introduced that
are represented by matrices in a K-dimensional space. The
first one is for incorporating the weather-popularity-score
that models whether or not a location is popular in a specific
weather feature class and is named L(2) ∈ R|L|×K , where K
denotes the size of the latent parameter space. Furthermore,
a matrix L(3) ∈ R|L|×K is introduced to model the influence
between two feature classes. In other words, L(3) softens the
borders between the particular feature classes. The third la-
tent parameter F (1) ∈ R|FCf |×K is then used to parametrize
the feature classes of the specific weather feature. In addi-
tion to the latent parameters, a Matrix WI ∈ R|FCf |×|FCf |

is introduced for storing the probability that a weather fea-
ture class c is influenced by feature class c′. Denoting xulc
as the frequency that a user u checked in at POI l with the
current weather context c, this probability is calculated as
follows:

wicc′ =

∑
u∈U

∑
l∈L xulcxulc′√∑

u∈U
∑

l∈L x
2
ulc

√∑
u∈U

∑
l∈L x

2
ulc′

(2)

To calculate the recommendation score for a given user u,
POI l and weather feature class c, Equation 3 is introduced,
where yul denotes the recommendation score as computed
in Li et al. [10].

yul = u(1)
u · l

(1)
l + u(2)

u ·
∑

l∗∈Nk(l)

wll∗ l
(1)
l∗

yulc = yul + f (1)
c · l(2)l + l

(3)
l ·

∑
c∗∈FC

wicc∗f
(1)
c∗

(3)

Algorithm 1 shows how we incorporated the weather con-
text features into the base Rank-GeoFM approach. Taking
the initialization and the hyperparameters from the original
approach we first iterate over all pairs of users and POIs
(u, l) ∈ D1, where D1 is the set of all check-ins and do the
adjustments of the latent parameters as described in Li et
al. [10].

We then introduce an iteration over all <user, venue,
feature-class> triples (u, l, c) ∈ D2 in order to adjust the
latent parameters on the incorrect ranked venues according
to the specific weather context. This adjustment is necessary
because the algorithm might rank a triple (u, l, c) correctly
where on the other hand (u, l, c′) might be ranked incor-
rectly. The adjustments are then done accordingly to the
base algorithm in lines 6-20.

During our studies we found that with a learning rate
of γg = .0001, as used in Li et al. [10], the algorithm did
not converge. The reason for that is that the adjustments
are done on a higher granularity for each (u, l, c) triple and
not just on the (u, l) level. Henceforth, we introduce a new
learning rate parameter γw = .00001 for the weather con-
text, for which stable results could be observed (validation
on hold-out data). Similarly to Li et al. [10], we found in
our experiments that the best values of the hyperparameters
are as follows (validated on hold-out data): ε = .3, C = 1.0,
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Figure 1: Check-in distributions over the 8 weather features.
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Figure 2: Examples of check-in distributions over different
types of places in Foursquare. On the left hand side, places
where people check-in at lower temperatures are shown and
on the right higher temperature places are featured.

α = β = .2, and K = 100 as used for the dimensions of the
matrices L(1), L(2) and L(3).

4. EXPERIMENTAL SETUP
In this section we describe in detail our experimental setup,

i.e., the datasets we used, a brief characterization of this
datasets concerning the weather features used, and the eval-
uation protocol we have chosen to conduct our study.

4.1 Datasets
The dataset we used in this study was obtained from the

work of Yang et al. [14]. It is a Foursquare crawl comprising
user check-in data from April 2012 to September 2013. The
original dataset contains more than 33 million check-ins from

415 cities in 77 countries.However, before dealing with our
problem on such a large scale, we decided to first concentrate
our investigation on a small set of US cities. We selected four
cities that could represent some weather variety in order to
investigate whether our model is resilient to such variety
of weather conditions (see Figure 3). Table 1 provides an
overview of the check-in statistics of the four target cities
chosen for our experiments: Minneapolis, Boston, Miami
and Honolulu.

Concerning the weather information, we have used the
API of forecast.io3 to collect, for each <time, place> tuple
present in our dataset, their corresponding weather informa-
tion. For that, we need to pass the following request to the
API:

https://api.forecast.io/forecast/APIKEY/LAT,LON,TIME

For the purposes of our analysis, we obtained eight weather
features, namely, cloud cover, visibility, moon phase, precip-
itation intensity, pressure, temperature, humidity and wind
speed, for all places and time-stamps in our dataset that are
provided by forecast.io.

4.2 Data Analysis
Figure 1 shows the probability distributions of check-ins

for each of the eight weather features used. Notice that the
distributions of pressure, temperature, humidity and wind
speed resemble a normal distribution (see the colored ap-
proximation curve). Moreover, while moon phase seems to
follow a uniform distribution, which indicates that it will
likely not help the recommendation model, the distribution
of precipitation is very skewed, showing that users have a
strong preference to check-in places when there is low pre-
cipitation intensity (i.e., not raining), indicating that this
feature might have a good discriminative power.

In addition to this, Figure 2 illustrates the check-in dis-
tribution as a function of temperature in four different POI
categories. As highlighted in this Figure, different patterns
occur depending on the category chosen. While people pre-
fer to check-in in e.g., “Austrian Restaurants” or “Ski Areas”

3https://developer.forecast.io/docs/v2
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(b) Visibility
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(c) Moonphase
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(d) Precipitation intensity
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(e) Pressure
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(f) Temperature
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(g) Humidity
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(h) Windspeed

Figure 3: Weather feature variability (sorted) measured via standard deviation over cities. Left: cities with lowest variability.
Right: cities with highest variability.
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Figure 4: Mean weather feature values (sorted) for POI categories with standard errors.

when the temperature is low, “Ice Cream Shops” or “Farms”
are preferred when temperatures are higher.

Figure 3 shows how the weather features vary in each city
of the original Foursquare dataset. Notice that with the
exception of moonphase, all the features present a depen-
dency regarding the city where they are measured, indicat-
ing that a different recommendation model should proba-
bly be trained for each different city. Moreover, in general,
weather shows a higher variability in the north of the US
and a very low variability in the south that peaks in the
island Honolulu which shows almost no variability in terms
of weather. Figure 4 shows the different mean values of
the eight weather features over the POI categories. With
the small overlapping of the standard error of the means
it’s revealed that indeed categories have a distinct popular-
ity across various weather feature values. Even moonphase
shows a divergent category popularity at its tails.

After this analysis we can confidently state that there is
indeed a relation between the weather conditions and the
check-in behavior of Foursquare users, which answer our first
research question (RQ1) stated at Section 1.

4.3 Evaluation
Protocol. To evaluate the performance of our algorithm,

we have chosen the same evaluation protocol as described
in the original Rank-GeoFM paper [10]. Hence, we split the
dataset (according to the time line) into training, validation
and testing sets for each city by adding the first 70% of the
check-ins of each user to the training set, the following 20%
to the test set and the rest to the validation set (=10%).
The training set was then used to learn the latent model
parameters. During the training phase of the algorithm,
the validation set was used to tune the algorithm conver-
gence. When convergence was observed (typically around
3,000-5,000 iterations with fast learning scheme enabled),
the training was stopped and the learned parameters were
used to evaluate the model on the test set.

Baselines. As baselines for our experiments, we used the
original Rank-GeoFM approach, that models user-preferences
as well as geographical influence into the model. Further-
more, we compare to the time-based method of Rank-GeoFM,
that was also introduced in Li et al. [10].

Metric. As evaluation metric NDCG@k (Normalized

Discounted Cumulative Gain) with k = 204 was chosen, as
we want to predict the top-k POIs for a user.

5. RESULTS
Figure 5 shows the results of our offline experiment. As

shown, in all cases over all four cities, Rank-GeoFM en-
riched with our proposed weather features significantly out-
perform the original Rank-GeoFM algorithm, which answers
our RQ2. For all pairwise-comparisons (recommenders with
weather context vs. without) a standard t-test showed that
the p-values were always smaller than p < .001. What is
even more interesting to note is the performance of Rank-
GeoFM that utilizes the time feature as contextual factor.
As highlighted, in all cases, Rank-GeoFM with weather fea-
tures, such as visibility and precipitation intensity outper-
forms the time-based variant, showing the indeed weather
conditions may help to improve the recommendation qual-
ity.

We also highlight the fact that certain weather features
perform better than others and this pattern seems to be
city dependent. This can be clearly observed in Figure 5,
where the results of Rank-GeoFM with each weather feature
is shown. This answers RQ3, showing which features provide
the highest gain in recommendation quality. For example, in
Honolulu the best performing feature is precipitation inten-
sity, while in Minneapolis visibility seems to work the best
among all investigated weather features. Similar patterns
can be observed for other features, such as temperature or
cloud cover changing their relative importance across the
four cities. These observations are in line with the results in
Figure 1, showing a strong tendency of check-ins into POIs
under certain weather conditions. However, what is also in-
teresting to note is the good performance of the moonphase
feature, which appeared to be uniformly distributed in gen-
eral (cf. Figure 1). Hence, it appears, that at the level of
locations, there is indeed a strong preference for check-ins
in different phases of the moon. In a recent research, Ko-
hyama et a. [9] found a relation between moonphase, tidal

4Please note, that we also run simulations with k=5 or 10,
with similar trends in the results as obtained with k = 20.
However, due to limited space, they were not included into
this paper.
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(c) Miami

Bas
eli

ne

Pre
ss

ur
e

Hum
idi

ty

Moo
np

ha
se

W
ind

sp
ee

d

Tem
pe

ra
tur

e
Tim

e

Clou
d c

ov
er

Visi
bli

ty

Pre
c.

Int
.

0.00

0.02

0.04

0.06

0.08

0.10

N
D

C
G

@
20

(d) Honolulu

Figure 5: Recommender accuracy for the 8 different weather context features (sorted by importance) compared to Rank-
GeoFM without weather context (denoted as “Baseline”). For further comparison the time-aware version of Rank-GeoFM is
included, denoted as “Time”. The red dotted line denotes the baseline.

variation, humidity and rainfall. Notably, we find a positive
correlation by analyzing these data based on check-ins, find-
ing a small but positive correlation between moonphase and
precipitation intensity, humidity, cloud cover and pressure,
as seen in the last row of the correlation matrix shown in
Figure 6. Although further analysis should be performed to
establish a link between our study and theirs, it might be in-
dicative of an explanation regarding the effect of moonphase
in our POI recommendation model.

Finally, the relative performance improvement over the
original Rank-GeoFM seems to be also location dependent.
Hence, while our approach work to a great extent better
compared to the baseline for Miami and Honolulu, the dif-
ferences are less pronounced for Minneapolis. One reason for
this observation could be that there are more POIs available
showing similar weather profiles. However, to further con-
firm these hypotheses, additional analyses are needed.

6. CONCLUSIONS
In this paper we presented our preliminary findings on

how weather data may affect users’ check-in behavior and
how this information can be used in the context of a POI
recommender system. As our preliminary analyses on the
Foursquare check-in data showed, the weather factors have
indeed a significant impact on the people’s check-in behav-
ior, showing different check-in profiles for different kinds of
places (which answers RQ1). Further, we fed the proposed
weather features into a state-of-the-art POI recommender

and we were able to increase the recommender accuracy in
comparison to the original method that does not use weather
data (thus answering RQ2). Furthermore, our experiments
revealed that the weather context is more useful than the
context of time and, that the weather features used in this
work are city-dependent. Finally, our study showed (see
RQ3) that among the considered weather features, precipi-
tation intensity and visibility are the most significant ones to
improve the ranking in a weather-aware POI recommender
system.

7. FUTURE WORK
Currently, our work only investigates one weather feature

at a time. Investigating different hybridization or context-
aware recommender system (CARS) methods and other con-
text variables will be therefore a task to be conduct in our
future work. Furthermore, it will help to investigate in more
detail, how the algorithm performs on the whole Foursquare
dataset, as more interesting patterns across cities may oc-
cur. Finally, we would like to extend our investigations also
at user levels, since the current ones concentrate only on the
weather profiles of the POIs.

8. OPEN SCIENCE
In order to make the results obtained in this work repro-

ducible, we share code and data of this study. The proposed
method Rank-GeoFM with weather context is implemented



Figure 6: Correlation matrix for the 8 weather features in-
vestigated (*p < 0.5, **p < 0.01, ***p < 0.001).

with the help of the MyMediaLite framework [7] and can
be downloaded for free from our GitHub repository5. Fur-
thermore, the data samples used in the experiments can be
requested for free via email from CT.
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