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Abstract Reading or viewing recommendations are a common feature on
modern media sites. What is shown to consumers as recommendations is nowa-
days often automatically determined by AI algorithms, typically with the goal
of helping consumers discover relevant content more easily. However, the high-
lighting or filtering of information that comes with such recommendations may
lead to undesired effects on consumers or even society, for example, when an
algorithm leads to the creation of filter bubbles or amplifies the spread of mis-
information. These well-documented phenomena create a need for improved
mechanisms for responsible media recommendation, which avoid such negative
effects of recommender systems. In this research note, we review the threats
and challenges that may result from the use of automated media recommen-
dation technology, and we outline possible steps to mitigate such undesired
societal effects in the future.

Keywords Recommender Systems · Societal Impact · Biases

1 Introduction

Many modern media sites nowadays provide content recommendations for their
online consumers, e.g., additional news stories to read or related videos to
watch (see Figure 1). The selection of the content to be presented to the users
is increasingly automated and done with the help of machine learning algo-
rithms. Such recommender systems, which typically rely both on individual
user interests and collective preference patterns in a community, are com-
monly designed to make it easier for consumers to discover relevant content.
At the same time, personalized recommendations can also create value for the
media providers, e.g., in terms of increased user retention or ad revenue, see
(Jannach and Jugovac, 2019) for an overview. Kirshenbaum et al (2012) and
Garcin et al (2014) for example both report that recommendations increased
the click-through rates on their news sites by more than 30%. In the online
streaming domain, Gomez-Uribe and Hunt (2015) furthermore discuss the var-
ious ways recommendations can create business value at Netflix, e.g., in terms
of customer retention.

However, the use of recommendation technology may also lead to certain
undesired effects, some of which only manifest themselves over time. Probably
the best known example is the phenomenon of the “filter bubble” (Pariser,
2011). Such a bubble can emerge when the algorithms learn about user in-
terests and opinions over time, and then start to solely present content that
matches these assumed interests and opinions. Ultimately, this can lead to self-
reinforcing feedback loops which may then result in undesired societal effects
such as opinion polarization or the increased spread of one-sided information
(Celis et al, 2019).

A common argument is that the emergence of such phenomena is often
a result of how the underlying algorithms work or what they are optimized
for. For example, when the goal is to maximize user interaction—and thus
clicks and ad impressions—an algorithm may learn that the best choice is to
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Fig. 1 A snapshot of the mobile app of Bergens Tidende, one of the largest newspapers
in Norway, showing news recommendations.

recommend what the consumer liked in the past or what is generally popular or
trending (Abdollahpouri et al, 2021). Recommendation algorithms focused on
such optimization goals can further lead to addicting users to social media
platforms (Andersson, 2008; Zakon, 2020; Schwär, 2021). Furthermore, we
cannot rule out that there are cases where recommendations providers do
not view this to be problematic, e.g., due to their goal to maximize short-
term profitability (Zheng et al, 2010). Following a specific political agenda
can also be a motivation, e.g., in the infamous case of Cambridge Analytica,
who employed mechanisms of Facebook to target voters in 2014 and 2015
(Oddleifson, 2020). In many other cases, however, organizations may have an
interest to avoid negative effects through more responsible recommendations.
Public broadcasters in Europe, for example, often have the explicit mission
to provide unbiased political information or to deliver content that is diverse
in nature. As an example, the Council of Europe has established standards
for public broadcasters to produce programmes that reflect the cultural and
linguistic diversity of the audience (Council of Europe, Commissioner, 2017).
Further, the British Broadcasting Corporation (BBC) has formulated a set
of principles on its own for the provision of news and TV programmes, with
the goals, e.g., of representing the different cultures of their audience and to
represent alternative opinions (BBC, 2019). Another example is Norway where
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the diversity of opinions is reflected in the official Norwegian media policy (e.g.,
NOU, 2017) and anchored in Article 100 in the Norwegian constitution. This
mission should then also be reflected in the recommendations, which often have
a major influence of what users consume online. But also private organizations
might be interested in avoiding one-sided or unbalanced recommendations, as
this might contradict their corporate mission or might simply hurt their public
reputation in the long run.

Next in Section 2 we review possible threats and undesired side effects of
recommendations and we shed some light on the underlying reasons for the
emergence of this effects. Afterwards, in Section 3, we discuss a selected set
of existing approaches to deal with these challenges and to deliver responsible
recommendations.

2 Undesired Effects and Underlying Causes

Prior research has identified a number of undesired effects that can be uninten-
tionally caused or intensified by recommender systems. Some of these effects
can be mainly attributed to characteristics of the algorithms that generate the
recommendations. Other effects, in contrast, largely stem from particularities
of the data that is used by the algorithms (Chen et al, 2018, 2020), such as the
history of recorded user interactions. Next, we review a number of such nega-
tive effects in some more depth before we summarize the potential underlying
reasons.

2.1 Description of Undesired Effects

Filter bubbles 1, as mentioned above, are one of the most frequently discussed
potential effects of personalization and recommendation, which assumedly may
pose serious threats to individuals and societies. A filter bubble refers to a so-
cial environment that lacks the exposure to diverse beliefs and viewpoints. It
can occur in undiversified communities where people are encapsulated within
a stream of media content (e.g., videos or news articles) that is optimized to
match their specific preferences (Nagulendra and Vassileva, 2014). This effect
can be created or reinforced by recommender systems, by over-personalizing
the media content based on the users’ interests, and consequently, trapping
them within an unchanging environment (Pariser, 2011). While “good” per-
sonalization helps users to obtain relevant information and hence addresses
information overload (Nguyen et al, 2014), overdoing it can lead the users to
only view what they individually want and keeping them inside a closed world,
cut out of the outside (or: diverse) world (Wang et al, 2014). In the long term,
this can harm users when they become isolated from outside of the “bubble”

1 A filter bubble can be considered as a stage of a bigger effect, Information Polarization,
which occurs when the individuals have no or limited access to diverse media content, and
hence, are exposed to a narrow range of information sources (Min et al, 2019).
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and create additional negative effects such as partial information blindness
(Pariser, 2011). As a result, it becomes unlikely that users will receive rec-
ommendations of less attractive but important content. Instead, they will be
surrounded by the viewpoints of like-minded users, and protected from sur-
prising information, or information that challenges their opinions. This may
ultimately weaken their creativity, as well as their thinking and learning ca-
pabilities (Nagulendra and Vassileva, 2014).2

Echo chambers—another potential effect of recommendations—refer to a
polarized environment where only certain viewpoints, information, and beliefs
are shared via communication. In such an environment, the users’ viewpoints
are repeatedly amplified through recurring exposure to similar media content
(Ge et al, 2020). This situation is more likely to occur within closed commu-
nities where people will only share opinions that they are in high agreement,
without free circulation of information with the outside world (Jamieson and
Cappella, 2008; Dubois and Blank, 2018). Echo chambers can be seen as an
inevitable effect in social media networks, due to their particular characteris-
tics, which can easily result in the formation of homogeneous and segregated
communities (Ge et al, 2020; Sasahara et al, 2019). Members of such polarized
communities tend to ignore information that is conflicting with their beliefs
and ideas (Iyengar and Hahn, 2009; Lawrence et al, 2010). Recommender sys-
tems can even intensify the echo chamber effect by suggesting media content
to users that reconfirms their background beliefs and existing viewpoints, and
hence, decrease their exposure to more diverse opinions.

The reinforced spread of misinformation, i.e., the communication and circu-
lation of false and misleading information, is another potential negative effect
of recommendations. This information that is spread is however not necessarily
meant to deceive people. Disinformation, in contrast, refers to false informa-
tion that is created and communicated in order to deceive people (Lazer et al,
2018). Recommender systems can unintentionally contribute to both of these
undesired effects, thus posing serious threats to communities. A notable ex-
ample is the spread of misinformation on the Swine Flu on Twitter (Morozov,
2009). Despite the lack of concrete evidence, it is commonly believed that the
Twitter recommendation algorithm has facilitated and reinforced the spread
of that misinformation so that it has reached a very large user community and
consequently caused panic in parts of the population (Fernandez and Bellogin,
2020). Online social platforms are a primary medium for the spread of such
misinformation, often due to the lack of editorial control. As a result, these

2 We acknowledge that a growing body of literature suggests that today’s technology and
use of recommender systems actually may have not isolated large segments of the audience
into bubbles to a large extent (e.g., Fletcher and Nielsen, 2017; Fletcher, 2020; Haim et al,
2018; Möller et al, 2018; Bechmann and Nielbo, 2018), or that filter bubbles are rather mainly
formed in our heads (Bruns, 2019a,b). Also, the threats of creating filter bubbles might be
much more pronounced for large content aggregators such as Google and Facebook than
for more traditional media sites that mainly provide curated content. Similar considerations
apply for echo chambers. It is nonetheless important to highlight that the situation can
quickly change when technology improves and their use increases (Zuiderveen et al, 2016).
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platforms are often considered as unreliable and untrustworthy sources of news
(Budak et al, 2011).

Fig. 2 Impressions of movies recommendations on the front page of TV 2 Play, plotted in
logarithmic scale. The yellow bars represent the top 50 popular movies based on the number
of playbacks made by users.

Popularity bias, i.e., the tendency of a recommender system to focus on
popular items, is an effect that often originates from the characteristics of the
data that is used to generate the recommendations. In real-world data collec-
tions, a large fraction of the contained information is often related to a small
set of popular (“blockbuster”) items, known as the short head. The rest of the
data, in contrast, is related to the long tail of average or niche items (Boratto
et al, 2021; Abdollahpouri et al, 2019, 2017; Elahi et al, 2021b). For example,
Figure 2 shows recent data from TV 2 Play3, one of the largest movie stream-
ing platforms in Norway. The numbers clearly indicate that a small fraction
of the movies that are recommended on the front page accounts for a large
number of the recorded page impressions. Interestingly, while recommender
systems are often considered as means to increase sales in the long tail, the
concentration on the short head can in fact be increased by a recommender
system (Fleder and Hosanagar, 2009; Jannach et al, 2015; Mansoury et al,
2020). A popularity bias can be amplified by a recommender system when it
learns from the recorded data to recommend popular items more frequently
than less popular items. Not all recommendation algorithms exhibit such ten-
dencies to the same extent, as discussed in (Jannach et al, 2015). Generally,
while recommending popular items is often considered a safe strategy in prac-
tice, it is not beneficial for the discovery of fresh or niche items. Moreover,
such a strategy also leads to a limited level of personalization and can push
the choices and consumption behavior of users towards the mainstream, which
is not always a desired effect. Several works have studied popularity biases and

3 https://play.tv2.no

https://play.tv2.no
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reported the existence of such effects for various online platforms that serve
their users with some forms of recommendation, see, e.g., (Mehrotra et al,
2018) for the case of Spotify.

Discrimination is another potential side effect of recommendations that
may harm individuals or certain groups in a society. Discrimination can be
defined as the unfair or unequal treatment of individuals, groups, classes or
social categories according to certain characteristics, e.g., gender, age, income,
education, religion, or ethnicity race (Ferrer et al, 2021; Pedreshi et al, 2008).
When discrimination is the result of using an intelligent system like a recom-
mender system, the phenomenon is often referred to as “digital discrimina-
tion”. Nowadays, digital discrimination is becoming more prevalent. Today, it
is considered a serious challenge due to the increasing number of decisions that
are either made automatically by such systems or due to human decisions that
are based on the output of algorithms. Discrimination through recommenda-
tion can occur in different forms and can affect certain individuals or groups
within a social environment. As an example, it has been shown that collabora-
tive filtering algorithms—which are among the most popular recommendation
techniques in the media industry—may intensify existing gender biases that
are inherited from the input data (Shakespeare et al, 2020). When such algo-
rithms are used, it may become much less likely that female artists are pushed
compared to male artists (Ferraro et al, 2021).

Finally, unfairness (or: the lack of fairness) is among the most important
challenges that may result as a side effect of automated recommendations.
Research on fairness and unfairness can be traced back to well over 50 years
(Hutchinson and Mitchell, 2019), and it has received renewed attention in the
most recent years, in particular also in the areas of machine learning or arti-
ficial intelligence in general. Informally speaking, unfairness refers to a social
environment where individuals perceive a severe lack of fairness. Fairness, in
turn, may be characterized as the absence of any bias, prejudice, favoritism,
mistreatment toward individuals, group, classes, or social categories based on
their inherent or acquired characteristics (Chen et al, 2020). While such a char-
acterization of fairness is certainly helpful, the notion of fairness often remains
vague and no common definition has been established within the relevant lit-
erature. Prior studies on algorithmic fairness reported that the perception of
fairness may strongly vary across individuals. For instance, Wang et al (2020)
found that the perception of fairness largely differed across hundreds of partic-
ipants of an experiment. This can be due to the complexity of the topic or the
highly sensitive, contextual, and subjective nature of fairness (van Leeuwen
et al, 2021).

In the context of recommender systems, different forms of fairness can be
defined. Abdollahpouri et al (2020) recently proposed a taxonomy of different
classes of fairness in recommender systems according to the various stakehold-
ers. They defined C-fairness, where the focus is on the perspective of those who
receive the recommendations (consumers); P-Fairness for those who provide
the items or content (providers); and S-fairness for those who neither receive
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nor provide the recommendations yet are influenced by the recommendations
as side stakeholders.

2.2 Discussion of Underlying Reasons

Fig. 3 Comparing the popularity of movies recommended on the front page of TV 2 Play
and the impressions (views) they received from the users.

Various of the discussed phenomena, including unfairness and discrimina-
tion, can be caused by different forms of bias in the data. The potential un-
desired effects of recommendations therefore often enter the system through
the data since the system learns from the data to replicate preexisting biases
(Ekstrand and Kluver, 2021). As an example, it is estimated that 68.5% of
Twitter users are male where only 31.5% are female (Tankovska, 2021). It is
therefore easy to imagine that a system may recommend disproportionately
more male users to follow than female users. As another example, according
to data by TV 2 Play shown in Figure 2, a narrow range of movies (44 out
of about 1000 movies) recommended on the front page received almost half
of the impressions. This may indicate that the implemented recommendation
algorithms have a tendency to recommend already popular items, e.g., movies
that have been watched frequently previously. The popularity of movies and
the number of impressions through the recommendations on TV 2 Play are
plotted in Figure 3, where a correlation can be clearly observed.

Technically, bias can be defined as a deviation from the standard, indicating
the existence of some form of statistical patterns in the data (Ferrer et al, 2021;
Danks and London, 2017). Bias in the data can come from how the data are
collected. Selection bias, for example, refers to an ill-designed process of data
collection and sampling where the data have been obtained from subgroups of
a population through a specific form of process (e.g., a non-random process).
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As a result of such a selection bias, the trends estimated for a population
cannot generalize to data collected from a new population (Mehrabi et al,
2019). For example, consider a dataset collected by a social media company
surveying the video tastes of its users. If the website is mainly used by experts
users, with a degree in art or cinema, the elicited preferences will be biased,
and hence, not representative of the entire society. Another type of bias is
the population bias, which refers to situations where statistics, demographics,
representatives, and user characteristics are different in the user population
represented in the dataset from the target population (Olteanu et al, 2019).
As an example, this bias can arise when relying on data collected from a
social network (e.g., Snapchat, which is mostly used by younger individuals)
to make recommendations for a population with different demographics (e.g.,
forum users on Reddit).

But not only biases in the data can contribute to the creation or inten-
sification of the described phenomena. In particular, the recommendation al-
gorithms can be another root cause for several of them, as discussed. As an
example, it has been found that the number of friends for a Facebook user does
not only reflect the popularity of a user, but is also dependent on the bias of
the recommendation algorithm of Facebook (Ugander et al, 2011). Algorithms
can also amplify already existing biases. For example, recommendation algo-
rithms that are trained on the MovieLens dataset 4—a very popular dataset
in the research community— were found to strongly intensify the preexist-
ing popularity bias they inherited from the dataset (Adomavicius et al, 2014;
Mansoury et al, 2020).

A bias amplification tendency of certain algorithms is often rooted in their
specific optimization goal (or technically, their objective function). Real-world
recommender systems typically focus on optimizing the underlying algorithm
according to the given Key Performance Indicators, e.g., to increase sales by
converting visitors into buyers. Therefore, the goal is to create recommendation
lists that maximize the probability that a customer makes an order, i.e., to
create lists that increase the conversion rate (Sun and Zhang, 2018). While
the conversion rate is a common metric in different business sectors, it has
been shown that it can create a severe case of popularity bias (Wang et al,
2021). Hence, the negative effects of recommendations can go beyond the users
(consumers of items) and also damage the business (suppliers of items).

In a different study (Chaney et al, 2018), it has been shown that recom-
mendation algorithms, biased towards popular items, might undermine the
consumption (or sales) of unpopular items (long tail), hence, preventing such
items to ever gain visibility and become popular. This may not be a big chal-
lenge for companies where the majority of the revenue comes from a few pop-
ular items. However, it may represent a problem if the main business of a
company is based on selling from the long tail of less-popular items. Such bi-
ased algorithm can thus negatively impact the revenue of such a company and
cause significant damage (Baeza-Yates, 2020).

4 https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
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Recent research has addressed this problem, for example by defining novel
optimization objectives that also consider the diversity of the recommenda-
tions (Antikacioglu and Ravi, 2017), or are able to balance the popularity,
novelty, or diversity of the items that are recommended to users (Abdollah-
pouri et al, 2017; de Souza Pereira Moreira et al, 2019; Jugovac et al, 2017).

3 Mitigating the Undesired Effects

There has been a rising attention paid by the research community on the
threats posed by recommender systems and their potential impact on indi-
viduals or societies (Paraschakis, 2016). Correspondingly, numerous research
works have focused on designing solutions as countermeasures to mitigate these
threats.

Fig. 4 Feedback Loop of Recommender Systems

Each of the solutions may target a specific key component of the envi-
ronment of a recommender systems, i.e., user, data, and model, and may be
applied at different stages of the feedback loop of recommender systems shown
in Figure 4 (Chen et al, 2020):

• user → data refers to the preference elicitation stage, where the users
provide data to the system as explicit or implicit feedback;

• data → model refers to the learning stage, where machine learning algo-
rithms are exploited to build user models based on the elicited data;

• model → user refers to the process of predicting preferences of users
based on the elicited information and to the process of generating recom-
mendations accordingly.

In this section, we briefly describe various solution approaches from the
literature, categorized into data-driven approaches, algorithmic approaches,
and user-centric approaches.
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3.1 Data-oriented Approaches

3.1.1 Data De-biasing

Several techniques have been proposed to de-bias the data. As an example,
various techniques addressed the selection bias in recommender systems, which
typically impacts the evaluation phase (Chen et al, 2020). The primary reason
for this bias can be that the available data often is not a representative sample
of the user preferences, as discussed above. This is in parts due to the fact that
users are free to decide for which items they provide their feedback (e.g., in
the form of ratings). A potential solution to mitigate the selection bias is
to redefine the prediction model to learn to predict which data is missing.
Hence, in addition to predicting the relevance of items for a target user, a
second task is to predict the likelihood that an item is chosen by the user
to rate. The assumption is that the chance of choosing an item by a user to
rate will depend on the value of the rating the user will provide (Chen et al,
2020). Technically, the probability of observing a user-item interaction can for
example be modelled by mixture of multinomials (Marlin et al, 2007), logit
(Marlin and Zemel, 2009) or matrix factorization models (Hernández-Lobato
et al, 2014).

Another known phenomenon is the conformity bias, which happens when
users are influenced by the opinions of others (e.g., on social media) and when
their expressed preferences deviate from their true preferences. An example
solution can be to treat the observed preferences of users as a synthetic out-
come of combining the true preferences with social influence. As a result, social
influence is taken directly into account in the recommendation model (Chen
et al, 2020).

Data biases and de-biasing approaches are highly relevant in practice. At
Bergens Tidende, for example, an age-related bias is often observed in the data,
resulting from the demographics of the subscriber population, which has a high
proportion of readers above the age of 50. This bias may make it difficult to
appropriately serve younger audiences, which is however desirable both from
a societal and commercial perspective. Hence, it can be important to apply
methods to mitigate these types of biases when serving recommendations,
e.g., by incorporating additional user features (e.g., age) within the user profile
(Luo et al, 2014). However, incorporating such extended features needs further
considerations regarding fairness in user modelling, as discussed in the next
section.

3.1.2 Fair User Modeling

User modeling refers to the process of creating and modifying a conceptual
representation of the users, and it deals with the personalization and adap-
tation of systems according the specific preferences and needs of the user (Li
and Zhao, 2020). In this context, fairness can refer to a modeling process that
does not create any unfair discrimination or unjust consequences (Yang and
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Stoyanovich, 2017). Accordingly, fairness in user modeling describes the con-
dition where the model, built on top of the user data, can fairly represent the
values of the users.

Various approaches have addressed fairness in user modeling. Existing rec-
ommender systems tend to collect user data in high volumes and large va-
rieties. It is often believed that every single action of online media users is
carefully monitored and precisely recorded. While some of the recorded data
can be essential, others may not necessarily be needed or may expose sensitive
information about the users. Building user models on top of such data can
cause serious issues of user privacy. To address such issues, some approaches
proposed to eliminate sensitive attributes of the users (e.g., gender, religion,
or race) when building models (Yao and Huang, 2017; Chausson, 2010). While
this can be effective in avoiding unfairness, it may fail to work properly in cer-
tain cases, e.g., when the sensitive attributes are highly correlated with other
attributes (Kamishima et al, 2011). In addition to that, eliminating certain at-
tributes of users can reduce the recommendation quality. In order to address
this, some approaches utilized embedding techniques to encode the attributes
before building the models. Consequently, the resulting user models do not
directly measure the sensitive attributes and instead compute latent features
for describing the users (Yao and Huang, 2017).

3.2 Algorithmic Countermeasures

A number of algorithmic approaches were proposed to deal with the poten-
tial undesired effects and biases of recommender systems (Chen et al, 2020;
Sürer et al, 2018). Increasing the diversity of the returned recommendations
is often a central approach (Nguyen et al, 2014). Technically, some existing
works in this direction enhance the diversity of the recommendation output
by modifying the core recommendation algorithms. Others rely on re-ranking
the output of an existing recommendation algorithm (Adomavicius and Kwon,
2012; Abdollahpouri et al, 2019; Jugovac et al, 2017; Trattner and Elsweiler,
2017). In the former case, the rating prediction model is extended with addi-
tional terms aiming to improve the fairness of the system, e.g., by reducing
the bias. In the latter case, re-ranking techniques are applied on top of the
existing recommendation algorithm, e.g., to post-process the recommendation
output and to build a more diversified list (Abdollahpouri et al, 2021). In this
section, we briefly review such approaches.

3.2.1 Enhancing Diversity, Novelty, and Serendipity

Over the past years, several approaches were proposed to enhance the diver-
sity of the recommendations created by a system. One of the early works on
diversity is (Bradley and Smyth, 2001), where an algorithm based on Bounded
Random Selection was proposed. Another example for an early work on di-
versity is (Ziegler et al, 2005), where the authors developed an algorithmic
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framework focusing on topic diversification. In addition, a dissimilarity metric
was proposed to measure the level of diversification and the effectiveness of the
underlying algorithm. Another notable work is (Patro et al, 2020), where the
authors proposed a technique that can positively enhance the diversity of a
recommender system for different stakeholders, i.e., users (consumers of items)
and business (suppliers of items). The technique sets a minimum threshold for
the exposure of different items, ensuring that a wider range of suppliers are
listed in the recommendations generated for users. Various other techniques
however exist as well, which were proposed earlier but are not directly tied to
the problems of responsible recommendation, see, e.g., (Kaminskas and Bridge,
2016; Adomavicius and Kwon, 2012; Jugovac et al, 2017)

Serendipity is another important dimension in recommender systems which
can contribute to the perceived fairness of a system. Serendipity as a concept
typically is considered to reflect the surprise element of recommendations.
Recommending serendipitous items can also be considered as an attempt to
reduce potential biases and hence improve the fairness of a recommender sys-
tem. Remember that the continuous recommendation of items that are already
known to users may reinforce the recommendation of popular items, hence in-
tensifying the popularity bias. Emphasizing serendipity and novelty can help
to promote items that have not had many chances to receive user feedback.
It has been shown that a certain lack of novelty and serendipity in recom-
mender systems can contribute to an overall dissatisfaction of users (Zhang
et al, 2012). However, introducing higher serendipity levels has to be done
carefully as some users are more engaged when surprising recommendations
are suggested to them while others may become disengaged, even dissatis-
fied, with such recommendations. Different research works exist which focus
on designing recommender algorithms that can deliver relevant recommenda-
tions while including new items that the users might be less familiar with
(Adamopoulos and Tuzhilin, 2014). This is in fact a crucial capability, since
there is a known trade-off between relevance, serendipity and novelty within
recommender systems. Ultimately, it is important that the the system fairly
deals with different types of user with different attitudes towards novel and
serendipitous content.

3.2.2 Technical Approaches for Enhancing Recommendations

Looking at technical approaches, the problem of fair rankings has traditionally
been dealt with from the perspective of search engines and the results they
provide to users. In this context, fairness refers to the condition where the
generated ranking contains a sufficiently diverse set of items that reflects the
interest of different groups of the society (e.g., underrepresented groups) and
avoids statistical discrimination against such groups (Castillo, 2019).

In the context of recommender systems, re-ranking algorithms have been
typically employed to post-process the output of recommender systems to
achieve a certain goal (e.g., improving fairness). An example is the work of
(Abdollahpouri et al, 2019), where the authors propose a post-processing tech-
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nique (dubbed xQuAD) in order to balance the exposure of the different items
in the catalog. This approach empowers the systems to tune the output towards
the generation of fair recommendations. Another example of a re-ranking tech-
niques is called ReGularization (RG), which aims to improve fairness through
balancing the ratio of popular and less popular items in the recommenda-
tion output. Technically, this is done by extending the objective function with
an additional regularization term. Accordingly, recommendations containing
more popular items are penalized in order to better create a balance between
popular and unpopular items (Abdollahpouri et al, 2017). A similar techni-
cal approach was proposed in (de Souza Pereira Moreira et al, 2019) for the
problem of news recommendation. In their approach, the goal was however
to balance item novelty with relevance, allowing the system, for example, to
promote novel content that is not yet too popular. In addition to the above
described approaches, there are some works that adopt techniques to perform
multi-objective optimization by simultaneously optimizing both accuracy and
diversity (Sürer et al, 2018; Caldeira et al, 2018). Another example is the work
by Ribeiro et al (2012), which utilizes genetic algorithms capable of balancing
accuracy, diversity, and novelty when generating recommendations for users.

3.3 User-Centric Approaches

Algorithmic fairness, as described in the previous section, can play an impor-
tant role in mitigating the negative impacts of the noted phenomena. However,
it could also be too simplistic to believe that this type of fairness can solve
the entire problem. Hence, one should not ignore the other, more user-centric
aspects of fairness, which can play an important role as well.

3.3.1 Dimensions of User-centric Fairness

User-centric fairness can be studied along different dimensions, including in
particular Engagement, Representation, and Action & Expression (Elahi et al,
2021a). Engagement refers to how different users are engaged with the recom-
mender system and interact with the provided recommendations. A wide range
of factors can impact the engagement of users, e.g., culture, beliefs, personal
characteristics, ethnicity, or education. The Representation dimension refers
to the adoption of different means when presenting recommendations to users.
This will enable different groups of users, with different characteristics (e.g.,
with different abilities), to properly comprehend the presented recommenda-
tions. Providing explanations for the recommendation or summarizing the key
features of the recommendations, e.g., through supporting materials, are exam-
ples to improve the fairness of a recommender system from the representation
point of view. The Action & Expression dimensions refers to supporting users
in expressing their feedback on the recommendations through different chan-
nels. This may be required due to the fact that different users may prefer
different ways of interacting with a recommender system and expressing their
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opinion. Some may prefer to provide their feedback to the recommendations
via pressing a button and some via writing it down. The system should offer
different ways to give feedback and hence allow users to gain a certain level of
control on the provided recommendations.

3.3.2 Creating Transparency

Research on transparency dates back to nearly 40 years ago, where early works
on expert systems proposed basic forms of explanations and justifications for
the advice made by these systems (Buchanan and Shortliffe, 1984). Later on,
research works on search engines indicated that transparency may largely im-
prove the performance of a search engine from the users’ perspective, often
leading to higher satisfaction with the system (Koenemann and Belkin, 1996).

While no common definition can be found within the relevant literature
for the concept of transparency, some works provide a generic description of
transparency as an information exchange between a subject and an object,
where the subject receives the information describing a service or a system
that the object is responsible for (Woudstra, 2021; Meijer, 2013). Other works
characterize transparency as a set of best practices regarding how users should
be provided with insights about a system, hence, enabling them to understand
why and how it works (Schelenz et al, 2020).

In the context of recommender systems, the need for transparency has been
articulated more frequently in recent years, see (Nunes and Jannach, 2017).
Traditionally, users of recommender systems mainly expect the recommenda-
tions to be accurately personalized. In future fairness-aware and responsible
recommender systems, however, users may more often expect the recommen-
dation to be communicated and presented transparently. In the literature,
different forms of transparency are discussed. One predominant form of estab-
lishing transparency is to provide explanations about how the system works.
Accordingly, the system should be able to provide sufficient information on
the relationship between the input of the system (e.g., user preferences) and
the mechanism that led to its output (i.e., the recommendations). This in-
formation helps users to gain a better understanding of the recommendation
process, thereby enabling them to revise their input in order to improve the
recommendations. An example of such research work is given in (Sinha and
Swearingen, 2002), where the authors conducted a user study comparing five
music recommender systems. The results of the study showed that users felt
more confident when the recommendation process is perceived by them as
being transparent.

3.3.3 Increasing Awareness

One of the key areas of interest in user-centric approaches is user awareness,
and a number of studies investigated the potential impact of this factor. Some
of the studies focused only on raising the awareness of users towards the poten-
tial threats in recommender systems by providing some form of explanations
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to them on why and how the system is acting responsibly (Tintarev and Mas-
thoff, 2007; Sonboli et al, 2021). An example can be a news recommender
systems that notifies users that some of the articles might be disputed and
may need careful attention by the user (Mohseni et al, 2019). Other studies
have gone beyond such a simple approach and devised tools and methods that
can further support users to act properly in problematic situations, e.g., meth-
ods that can automatically detect fake news in recommended news articles and
inform the users appropriately on how to get rid of them (Della Vedova et al,
2018; Ruchansky et al, 2017). The argument for such approaches is that while
raising the awareness of users regarding fairness issues is an essential objec-
tive, offering solutions to address these issues is another equally important
objective. Addressing both objectives can better help users to gain knowledge,
and at the same time, support them to find and use the concrete countermea-
sures provided by the system. Such countermeasures are often among the more
hidden features of the system and their functionalities may not always very
clear to the users (Jannach et al, 2016). An example of a work in this area
is (Sonboli et al, 2021), where the authors conducted an exploratory study to
investigate the user perception of fairness and fairness-aware objectives in a
recommender system. The study concluded with three important suggestions:

– Recommender systems should offer explanations to describe the fairness
objective of the system for the users;

– Recommender systems should not provide explanations in order to nudge
users into making a choice, although the goal might be fairness;

– Recommender systems should explain the motivation for considering fair-
ness as an objective of the system.

Regardless of the goals and methodology, any form of transparency as
discussed above may be beneficial for users and improve the perceived fairness
of the system.

4 Conclusion

Algorithm-generated recommendations are nowadays ubiquitous on the Web,
in particular on media sites, where recommender systems are used to suggest
news content or videos to watch for users. While there are many industry
reports on the benefits of recommender systems, such personalized systems
may also lead to undesired effects on individuals, communities, or a society
as a whole. In this paper, we have reviewed the corresponding challenges and
threats and outlined existing approaches to mitigate problems such as biases
or the lack of fairness. Overall, while there is an increasing awareness in the
community of these problems, more research is still needed to develop future
techniques for responsible media recommendation.

A coordinated effort to address these problems is currently made in the re-
cently established MediaFutures Research Centre for Responsible Media Tech-
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nology & Innovation5.The centre involves a number of partners from academia
and industry, including the most important players in media in the Nordic re-
gion as well as a partner from the global tech industry. One main objective
of the project is to study and tackle negative effects of recommendation tech-
nologies and to develop a new generation of responsible media technology by
leveraging state-of-the-art AI technology for the media sector.

5 Conflict of Interest Statement
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Zhang YC, Séaghdha DÓ, Quercia D, Jambor T (2012) Auralist: introducing
serendipity into music recommendation. In: Proceedings of the fifth ACM
International Conference on Web Search and Data Mining (WSDM ’12), pp
13–22

Zheng H, Wang D, Zhang Q, Li H, Yang T (2010) Do clicks measure recom-
mendation relevancy? An empirical user study. In: Proceedings of the fourth
ACM Conference on Recommender Systems, pp 249–252

Ziegler CN, McNee SM, Konstan JA, Lausen G (2005) Improving recommen-
dation lists through topic diversification. In: Proceedings of the 14th Inter-
national Conference on World Wide Web, pp 22–32

Zuiderveen FB, Trilling D, Moeller J, Bodó B, de Vreese CH, Helberger N
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