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Abstract—Existing approaches to predicting tie strength be-
tween users involve either online social networks or location-based
social networks. To date, few studies combined these networks
to investigate the intensity of social relations between users. In
this paper we analyzed tie strength defined as partners and
acquaintances in two domains: a location-based social network
and an online social network (Second Life). We compared
user pairs in terms of their partnership and found significant
differences between partners and acquaintances. Following these
observations, we evaluated the social proximity of users via
supervised and unsupervised learning algorithms and established
that homophilic features were most valuable for the prediction
of partnership.

Keywords—Online Social Networks; Location-Based Social Net-
works; Partner Prediction; Virtual Worlds

I. INTRODUCTION

Social networks contain useful information about the rela-
tion between their participants and the understanding of their
characteristics is a prerequisite to interpret social dynamics
[1]. The advent of online social networks afforded large-scale
data and topological network features were complemented by
homophilic features that model the alikeness of users in a
network. Nevertheless, the social proximity between users in
the real world is not only driven by online social networks
but also by their mobility patterns. The availability of such
data changed with the arrival of GPS aware mobile phones
and location-based social networks opened a new information
source. Not all links in a network are equal and so it is
not sufficient to consider them merely as loosely coupled.
Granovetter [2] introduced the term “tie strength” and proposed
the overlap of neighbors derived from the network topology
as an indicator.

A considerable body of research investigating tie strength
focused on either online social networks [3], [4], [5] or
location-based social networks [6], [7], [8]. However, there
are few studies combining both domains are rare. To fill this
gap, in this paper we analyze the tie strength between users –
defined as partners and acquaintances - with social proximity
features from an online social network and a location-based
social network.

Since it is nearly impossible to collect large-scale social
network and position data of the same users in a real-world
scenario, we obtained datasets for the experiments from the

virtual world of Second Life. Text-based interactions between
residents (posts, comments, loves) and profile data (affiliated
groups, specified interests, partnership information) were har-
vested from a Facebook-like online social network My Second
Life. Additionally, we monitored position and mobility patterns
of these users by attending events in the virtual environment
over a period of 12 months. To model the social proximity
between the users, we computed network topological and
homophilic features based on their profiles, as pro- posed in
related work.

Overall, our aim was to answer the following research
questions:

• RQ1: To what extent do partners and acquaintances
differ from each other based on social proximity
features induced from the online social network and
the location-based social network?

• RQ2: How well can we predict a partnership between
users via the social proximity features from both data
sources?

• RQ3: Which features offer the highest information
gain and the highest accuracy to predict partnership
between users?

Based on these questions, we conducted a number of exper-
iments using statistical methods and supervised and unsuper-
vised learning approaches. A statistical analysis of the studied
feature showed that significant differences existed between
partners and acquaintances. For instance, we discovered that
partners were less interested in exploring new locations or
meeting new friends than acquaintances and that the number
of text interactions and the average spatial distance between
users could signify intimate contact. The learning algorithms
identified homophilic features, such as attended events and
the distance between users, derived from the location-based
social network to be most valuable with regard to partnership
prediction. Our experiments showed that the combination of
features from both domains (=an online social network and
a location-based social network) outperformed the features of
either domain.

The major contributions of this paper are as follows:

• The introduction of a novel large-scale dataset that



incorporates online social network data and location-
based social network of the same users.

• The analysis of a large set of social proximity features
from an online social network and a location-based
social network that allows to predict a partnership
between users with an accuracy of 0.933 AUC.

In detail the paper is structured as follows: In Section II
we discuss related work. In Section III we shortly introduce
the dataset used for our experiments. In Section IV we outline
the set of features used for our experiments described in
Section V. Section VI presents the results of our study. Finally,
Section VII discusses our findings and concludes the paper.

II. RELATED WORK

Relevant related work in this area can broadly be divided
into the following two areas: Predicting links and predicting
tie strength in online and location-based social networks.

A. Predicting links in online and location-based social net-
works

Liben-Novell and Kleinberg [9] formalized the problem of
predicting new links in a network and developed an approach
based on the topology of the network. They used information
about direct neighbors and employed the ensemble of all
paths from one user to another. This approach yielded in
significantly better predictability of new links compared to
a random approach. Computationally efficient methods of
this structure-centric approach were evaluated by Fire et al.
[10]. Surprisingly, using only topological features they could
successfully find new links that evolve within two hops in the
network. However, topological features can only be applied if
the structure of the actual network is known. If this is not the
case, homophilic features such as a metric for the likeness of
two users can be used instead. In their work Towall et al. [11]
investigated the social network of MySpace using homophilic
features. Their studies revealed a significant homophily of
origin, marital status and the sexual orientation in existing
links. Further they uncovered that a friendship in an online
social network could even reflect an offline friendship. While
these papers were of analytical nature, Mislove et al. [12]
extended the known attributes of a few users in a network
to learn about other users. They used Facebook datasets with
educational data and region information as attributes and found
that one could infer the attributes of 80% of users from the
remaining 20% with an accuracy of 80%. Rowe et al. [13]
combined topological features and homophilic features in the
Chinese microblogging service Tencent Weibo. In their work
they predict network links and show that homophilic features
do not only significantly outperform a random baseline but
also topological features.

Scientific work for the link prediction problem was mainly
done for online social networks but as more and more position
data became available, the combination of both worlds was
investigated too. One popular work in this respect is for
instance a study of Cranwshaw et al. [14] who examined
data of the Facebook application Locaccino and analyzed the
offline mobility data of 489 users. They used the position
data, separated it into two categories with topological and
homophilic information and tried to predict the online links

with the position information. Homophilic data obtained from
the location was identified as valuable information but in
combination with topological features it performed even better.
Scellato et al. [15], [16] also revealed the importance of place
related features and identified 30% of new links in the Gowalla
network as place friends and 40% of all links within a range
of 100 kilometers. Further they uncovered a weak correlation
between the number of friends and their spatial distance.
Noulan et al. [17] used this fact to predict venues of users
in Gowalla network. They also achieved best results when
combining information from social ties and visited venues.

B. Predicting tie strength in online and location-based social
networks

Not all links between nodes in a network are equal and
Granovetter [2] tightened the definition by introducing the
tie strength of connections. Studies by Gilbert et al. [4],
[3] used Facebook to investigate tie strength between online
friends. They combined communication features, topological
information and the social distance, and correlated it with
2,000 users who specified their real friends in interviews and
questionnaires. They could predict different tie strength with an
accuracy of 85% and notably, they were even able to transfer
information about the tie strength of two users from one social
network to the other, i.e. from Facebook to Twitter.

While the tie strength between users in online social
networks was extensively investigated, few studies combined
offline networks and tie strength. The first to mention study is
by Wang et al. [6] who collected the mobile phone data of 6
Million users and measured the tie strength according to the
number of calls between user pairs. They found that although
new links could be predicted via mobility measures alone,
combining them with topological information in the network
yielded even better results. With regard to tie strength, they
found that its correlation with the user mobility traces and
social proximity was weak. This is in agreement with Choi et
al. [7] who analyzed communication patterns and indoor
mobility tracking of 22 office mates. To define tie strength,
the users formal and informal contacts were differentiated in
their study. Via a supervised learning approach, they could
identify links with an accuracy of 85%. Finally, the last to
mention paper in this respect is the work of Bischoff [8].
In her work the author studied the social network Last.fm in
respect to the geo location of user and attended events. Tie
strength was defined as the number of commonly attended
events, and online communications and music tastes were used
to predict it. The results were in agreement with previous
works, confirming a correlation between tie strength and data
from the online social network.

III. DATASETS

We conducted our experiments using online social network
data and location-based social network data obtained from
the virtual world of Second Life. There were several reasons
for choosing Second Life online social network. First, unlike
such networks as Facebook, My Second Life does not restrict
extensive crawling of the users profiles. Second, in contrast to
real-world online social networks, most of the profiles in My
Second Life are public, i.e., a large fraction of the network can
be mined. Third, although in virtual worlds the user location



information can be harvested automatically, in the real world
it is nearly impossible to obtain large-scale user tracking data.
In this Section we describe the data collection process for our
experiments.

A. Location-Based Social Network Dataset

Similar to the real life, residents of Second Life can host
events and announce them to the public. Users log into the
Second Life Web page and create new events with name,
description, location and start time and assign them to one
out of ten predefined categories, e.g. Nightlife or Live Music.
Further, events have three maturity ratings that depend on the
rating of the location: General without any age restrictions,
Mature with users at least 16 years old, and finally Adult
accessible only for grown-up users.

One of the many advantages of using Second Life as
testbed for our experiments is the fact that all events are
announced to the general public on the Second Life website
– called the Second Life event calendar. In order to harvest
this kind of data we implemented a simple Web-based crawler
which collected all relevant event information on a daily basis.
Starting with March 2012, we collected 262,234 events over a
period of 12 months [18].

To participate in the virtual world, users register with
Second Life, download the client software from Linden Labs
and log in. Among other third party clients, libopenmetaverse1

is an open-source client for the command-line to enter the envi-
ronment. It can be run as a server process and the functionality
can be easily enhanced due to the modular design. We added
new capabilities to automatically move around in the virtual
world and collect information of surrounding users. These
user-bots were controlled by a centralized server-instance that
sent them to places with ongoing events. On average a bot
needed 1 minute to move to a new location and collect the
position data of surrounding users. To speed up the collection
process and to visit more events concurrently, we employed a
pool of 15 bots that alternately visited events. The collected
information comprised user names, accurate position of the
observed users, and a time stamp. Overall, we collected nearly
19 million data samples of 410,619 different users in 4,105
different locations.

The naive approach to create a location-based social net-
work out of this huge amount of data would have been to inter-
link two users with each other whenever they met. Since this
would yield in a network with billions of edges, we applied a
simple heuristic to prune our data. In particular, we only inter-
linked two users with each other in the network if they were
seen concurrently in the same region on two different days.
With this simple approach at hand we were able to reduce
the number of edges to 4,473,739. Formally we define this
network as graph GL〈VL, EL〉 with VL representing the users
in the network and e = (u, v) ∈ EL if users u and v were
concurrently observed in the same region on two different days.
In Table I we present the basic properties of the network.

B. Online Social Network Data

In 2007 Linden Labs introduced the online social network
platform My Second Life which is similar to Facebook or

1http://lib.openmetaverse.org/

TABLE I. BASIC METRICS OF THE TWO NETWORKS AND THEIR
COMBINATION USED FOR THE EXPERIMENTS.

Name Location-Based GL Online GO GL + GO

Type undirected directed directed
#Nodes 156, 844 152, 509 44, 603
#Edges 4, 473, 739 270, 567 1, 419, 543
Degree 57.05 3.54 63.65

Google+. The target group are residents of Second Life to
share text messages, comments or loves (similar to Facebook’s
“Likes”). Users of Second Life automatically have a profile
without additional registration and by default these profiles
are opened for public access. In contrast to Facebook, there is
no mutual friendship confirmation between users and every
user can post onto the Feed of each other (similarly to
Facebook’s “Wall”) without their explicite permission. Besides
the interactions with others, users can enhance their profiles
and describe themselves with a biography, interests, and their
partnership status. Users can even marry in Second Life but
a wedding is not free of charge and costs 10 Linden Dollars
(Linden Dollar is the virtual currency used in Second Life
- 1 US Dollar equals approximately 258 Linden Dollars).
Though, nothing is forever and canceling this partnership costs
25 Linden Dollars.

To harvest this data, we extracted the set of user names
from the position dataset and attempted to download their
interaction data and profile information with groups, interests,
and partner. We extracted the user names of the interaction
partners and fetched the missing ones iteratively until no new
users were found any more. Overall, we downloaded the profile
data of 152,509 users with interactions on their walls and
identified 1,084,002 postings, 459,734 comments, 1,631,568
loves and 285,528 unique groups. On average users joined
15.61 groups specified 6.5 interests. 39,936 users were in a
partnership which resulted in 18,468 couples in the whole
dataset. Formally, this network is defined as GO = 〈VO, EO〉,
with VO representing the users with interactions on their Feed,
and e = (u, v) ∈ EO if user u interacted with user v (posting,
comment, love). In Table I we present the basic properties of
the network.

IV. FEATURE DESCRIPTION

As already outlined in the introductory part of this paper,
it is our aim to study the extent to which partnership between
users can be predicted based on two different types of data –
online social network and location-based social network data.
To that end, we induce two different types of feature sets from
our data sources: network topological and homophilic features
[13], [19].

A. Location-Based Social Network Features

1) Topological Features: Users in online networks with
small-world characteristics are clustered locally and the more
neighbors two users have in common, the closer they are
connected. With the formal definition of the neighbors of a
node u ∈ VL as Θ(u) = {v | (u, v) ∈ EL} this feature
could be computed as LCN (u, v) = |Θ(u) ∩ Θ(v)|. This
measure indicated the overlap of neighbors regardless of the
total number of neighbors the users have. To take this into
account, we computed Jaccard’s Coefficient as the number of

http://lib.openmetaverse.org/


common neighbors divided by the total number of neighbors
of two users: LJC(u, v) = |Θ(u)∩Θ(v)|

|Θ(u)∪Θ(v)| .

A refinement of this metric was proposed by Adamic-
Adar [20]. As not all neighbors in a network have the
same tie strength, they added weights to the links and
computed the relation between two users as LAA(u, v) =∑
z∈Θ(u)∩Θ(v)

1
log(|Θ(z)|) .

Another feature to measure the structural overlap of two
users was introduced by Cranshaw et al. [14]. They introduced
the “neigbourhood overlap” as the number of common neigh-
bors divided by the sum of neighbors of either users. Formally,
this can be written as LNO(u, v) = |Θ(u)∩Θ(v)|

|Θ(u)+Θ(v)| .

Active users within a network are more likely to form
new interactions than users with less activity. “Preferential
Attachment Score” was first mention by Barabasi et al. [21]
and is the product of the sum of neighbors of either users:
LPA(u, v) = |Θ(u)| · |Θ(v)|.

2) Homophilic Features: In contrast to the topological
features in the previous section, homophilic features directly
represent the alikeness of user-pairs. These features do not
dependent on their direct neighbors in the network or the
structure of the network per se because they are only based on
properties of either nodes. These features have been identified
as valuable resource for link prediction in several studies [12],
[16], or [11].

As outlined before, we implemented user-bots that moni-
tored present users at event sites. Using the position data of
users, respectively the location and time span of events, we
identified all events a user u visited over a year: Π(u) =
{e1, . . . , en} where ei represented the i’th event out of n
visited. With this simple metric we computed the number of
events two users attended in common EC = |Π(u) ∩ Π(v)|,
the total number of events ET = |Π(u) ∪ Π(v)|, and finally
their fraction EJC = |Π(u)∩Π(v)|

|Π(u)∪Π(v)| .

A refinement of this measure also takes the trajectory of the
visited events into account. For each user pair (u, v) we created
two vectors ε(u), ε(v) that represent their totally visited events.
The j’th component of each vector ε was set to 1 if the
user visited the actual event and was set to 0 if it did not.
Then we computed the cosine similarity of these two vectors
which is formally defined as ECS = ε(u)·ε(v)

||ε(u)||·||ε(v)|| where ||ε||
represented the Euclidean length of the vector.

Similar measures can be based on the categories and the
maturity rating of events. Events are assigned to different
categories and for each user u we created a vector δ of
length, where every item represented the number of events
attended in a category. We computed the cosine similarity of
two users’ vectors δ(u) and δ(v) as ECCos = δ(u)·δ(v)

||δ(u)||·||δ(v)|| .
The same measure was applied to the maturity rating of events:
EMCos = γ(u)·γ(v)

||γ(u)||·||γ(v)|| with γ representing number of events
a users visited with the according maturity level.

Besides the different category and maturity setting of
events, we formally defined the event locations a user u visited
over the observation time span as P (u). According to this,
we computed the similarity of two users with respect to their

TABLE II. AREA UNDER THE ROC CURVE (AUC) FOR PREDICTING
PARTNERSHIP WITH DIFFERENT FEATURE SETS AND LEARNING

ALGORITHMS. THE BEST ALGORITHM FOR EACH FEATURE SET IS
HIGHLIGHTED IN BOLD LETTERS.

Feature Sets J.48 Logistic Regression SVM

Online
Network

Topological 0.823 0.743 0.659
Homophilic 0.775 0.817 0.720
Combined 0.860 0.878 0.771

Location-
Based

Network

Topological 0.745 0.772 0.657
Homophilic 0.852 0.902 0.818
Combined 0.845 0.905 0.829

Combined 0.881 0.933 0.859

visited regions with already described approaches. First, we
measured the number of common regions two users visited,
not necessarily at the same time RC(u, v) = |P (u) ∩ P (v)|,
second the total regions of two users RT (u, v) = |P (u)∪P (v)|
and finally Jaccard’s Coefficient as a combination of both:
RJC = |P (u)∩P (v)|

|P (u)∪P (v)| .

Finally, we present two features that reflected the user’s
activity. First, we extracted the number of days two users
were concurrently seen in the same region ADS(u, v) and
second, we defined the average distance between them: with
the accurate position of every user, we computed the Euclidean
distance between them and averaged over all observations to
get the spatial proximity AD(u, v) of the users u and v.

B. Online Social Network Features

1) Topological Features: The topological features de-
scribed in this section are similar to the topological features in
the location-based social network. The only difference is that
the online social network contains more hidden information
due to its directed structure. We defined the neighbors of a user
u in the network with respect to the communication direction:
neighbors that received a message from user u were denoted as
Γ(u)+ = {v | (u, v) ∈ EO} and neighbors that send messages
to user u as Γ(u)− = {v | (v, u) ∈ EO}.

The first and most simple measure was the number of
common friends a pair of users had. Due to the different
definitions of neighbors, we defined the common outgoing
neighbors as O+

CN (u, v) = |Γ+(u) ∩ Γ+(v)| and the common
incoming neighbors as O−CN (u, v) = |Γ−(u) ∩ Γ−(v)|.

The relation between common friends of two users and
their total friends is Jaccard’s Coefficient and could be seen as
a measure for exclusiveness of this relation. Again, we split it
into two features O+

JC(u, v) = |Γ+(u)∩Γ+(v)|
|Γ+(u)∪Γ+(v)| and O−JC(u, v) =

|Γ−(u)∩Γ−(v)|
|Γ−(u)∪Γ−(v)| .

In their paper Cheng et al. [22] investigate in the reci-
procity of user communication in a directed network and
to take this bidirectional communication into account, we
computed OR(u, v) = 1 if (u, v) ∈ EO, (v, u) ∈ EO and
OR(u, v) = 0 if (u, v) ∈ EO, (v, u) /∈ EO. Furthermore
they proposed a modification to the Adamic-Adar measure
for directed networks which can be written as O−AA(u, v) =∑
z∈Γ−(u)∩Γ−(v)

1
log(|Γ−(z)|) .

“Preferential Attachment Score” takes the level of ac-
tivity into account and due to the directed structure used



TABLE III. THE MEAN VALUES AND STANDARD ERRORS FOR
TOPOLOGICAL AND HOMOPHILIC FEATURES IN THE ONLINE SOCIAL

NETWORK. THE SIGNIFICANCE FOR THE DIFFERENCES OF PARTNERS AND
ACQUAINTANCES IS ∗∗∗p < 0.001.

Features Partners Acquaintances

O
nl

in
e

So
ci

al
N

et
w

or
k

To
po

lo
gi

ca
l

O+
CN (u, v)∗∗∗ 1.08± 0.23 11.93± 0.13

O−
CN (u, v)∗∗∗ 1.12± 0.18 11.70± 0.13

O+
JC(u, v)∗∗∗ 0.03± 0.00 0.05± 0.00

O−
JC(u, v)∗∗∗ 0.06± 0.00 0.05± 0.00

OAA(u, v)∗∗∗ 0.81± 0.10 6.30± 0.07

O+
PS(u, v)∗∗∗ 361.17± 107.91 6921.79± 115.11

O−
PS(u, v)∗∗∗ 367.21± 107.91 9854.15± 132.40

ORE(u, v)∗∗∗ 0.49± 0.01 0.29± 0.00

H
om

op
hi

lic

GC(u, v)∗∗∗ 2.30± 0.09 0.50± 0.01

GJC(u, v)∗∗∗ 0.06± 0.00 0.01± 0.00

IC(u, v) 0.05± 0.01 0.06± 0.00

IJC(u, v) 0.00± 0.00 0.00± 0.00

PA(u, v)∗∗∗ 27.25± 0.67 18.53± 0.13

PC(u, v)∗∗∗ 5.00± 0.50 2.02± 0.07

PI(u, v)∗∗∗ 19.40± 1.81 13.11± 0.29

PL(u, v)∗∗∗ 12.33± 1.35 10.47± 0.24

PP (u, v)∗∗∗ 2.07± 0.13 0.62± 0.06

O+
PS(u, v) = |Γ+(u) · Γ+(v)|, and one for received-message

neighbors O−PS(u, v) = |Γ−(u) · Γ−(v)|.
2) Homophilic Features: Users of Second Life can join

groups and specify interests on their profiles to state their opin-
ions. The structure of the data is quite similar for interests and
groups, so we could apply the same mechanisms to indicate
the similarity between a pair of users. Formally, we defined the
groups of a user u as ∆(u) and the specified interests as Ψ(u).
For each pair of users in the network we defined the common
interests and the common groups they share: GC(u, v) =
|∆(u)∩∆(v)|, respectively IC(u, v) = |Ψ(u)∩Ψ(v)|. Further,
we computed Jaccard’s Coefficient to take the total number of
groups and interests into account: GJC(u, v) = |∆(u)∩∆(v)|

|∆(u)∪∆(v)| ,

respectively IJC(u, v) = |Ψ(u)∩Ψ(v)|
|Ψ(u)∪Ψ(v)| .

Further, users can share text messages, comments, or loves
with others and the intensity of this communication could be an
indicator of their partnership. As a consequence we measured
the number of occurrences for each type of interaction and
summed it up for the overall number of interactions between
users. We defined PP (u, v) as the number of text messages,
PC(u, v) as the number of comments, PL(u, v) as the number
of loves, and PI(u, v) = PP (u, v) + PC(u, v) + PL(u, v) as
the number of interactions between user u and v.

Another measure for the proximity of users is the average
message length of all interactions between them. Hence, we
computed the average message length PA(u, v) as concatena-
tion of all postings and comments between user u and user v
and divided it by their quantity.

V. EXPERIMENTAL SETUP

In the previous section we created two networks derived
from two different domains, and described topological and
homophilic features for both. In this section we present the ex-
periments to answer the research questions. First, we describe
the analysis to compare partners and acquaintances upon their
features to determine significant differences. Then we show
supervised and unsupervised learning approaches to evaluate
these features regarding their predictability of partnership.

To conduct all further experiments, we merged the online
and the location-based social network into one mixed network

TABLE IV. THE MEAN VALUES AND STANDARD ERRORS FOR
TOPOLOGICAL AND HOMOPHILIC FEATURES IN THE LOCATION-BASED

SOCIAL NETWORK. THE SIGNIFICANCE FOR THE DIFFERENCES OF
PARTNERS AND ACQUAINTANCES IS ∗∗∗p < 0.001.

Features Partners Acquaintances

L
oc

at
io

n-
B

as
ed

So
ci

al
N

et
w

or
k

To
po

lo
gi

ca
l LCN (u, v)∗∗∗ 52.30± 5.48 53.33± 1.19

LJC(u, v)∗∗∗ 0.29± 0.01 0.17± 0.00

LAA(u, v)∗∗∗ 77.87± 6.03 181.24± 3.15

LPS(u, v)∗∗∗ 92324.84± 42759.98 82591.90± 3771.87

LNO(u, v)∗∗∗ 0.81± 0.00 0.87± 0.00

H
om

op
hi

lic

EC(u, v)∗∗∗ 9.51± 0.85 1.00± 0.02

ET (u, v)∗∗∗ 32.22± 1.60 41.45± 0.27

EJC(u, v)∗∗∗ 0.31± 0.01 0.02± 0.00

ECos(u, v)∗∗∗ 0.43± 0.01 0.04± 0.00

ECCos(u, v)∗∗∗ 0.82± 0.01 0.66± 0.00

EMCos(u, v)∗∗∗ 0.76± 0.01 0.19± 0.00

RC(u, v)∗∗∗ 4.63± 0.12 3.12± 0.04

RT (u, v)∗∗∗ 10.84± 0.24 16.95± 0.20

RO(u, v)∗∗∗ 0.31± 0.00 0.18± 0.00

AS(u, v)∗∗∗ 11.54± 0.44 6.74± 0.11

AD(u, v)∗∗∗ 5.02± 0.27 11.70± 0.22

G〈V,E〉. This new network comprised of users u that can
be found in the directed online social network GO as well
as in the undirected location-based social network GL: V =
{u | u ∈ VO, u ∈ VL}. The edges E representing the relations
between these users were defined as the union of edges from
either networks: E = {(u, v) | (u, v) ∈ EO or (u, v) ∈
EL, and u, v ∈ V }.

The overall number of users in this network was 44,603
and the number of edges was 1,419,543 with 1,584 user pairs
in a partnership (see Table I for basic characteristics of the
network).

A. Comparing Partners and Acquaintances

To answer the first research question, we analyzed the sim-
ilarities and dissimilarities between partners and acquaintances
with respect to the features described in Section IV. We split
the user pairs into balanced sets of partners and acquaintances,
and computed mean values and standard errors of all fea-
tures in either sets separately. The one-sampled Kolmogorov-
Smirnov and the Anderson-Darling test showed that none of
the distributions of the features were from the family of normal
distribution. As a consequence and similarly to Bischoff [8],
we compared the variances of all features between partners
and acquaintances using a Levene test (p < 0.01). To test
significant differences of mean values, we employed Mann-
Whitney-Wilcoxon test in case of equal variances and a two-
sided Kolmogorov-Smirnov test in case of unequal variances.

B. Predicting Partnership

Residents of Second Life can marry their friends and the
partnership information with the partner’s name appears on
their profiles. To answer the remaining research questions, we
employed the social proximity features to predict whether a
user pair is in a partnership or not.

Basically, we used two different techniques:

• Predicting Partnership with Supervised Learning: In
this approach we applied different learning algorithms
onto a training set to identify characteristics of part-
nership and then verified this in a test set. To do
so, we reduced the prediction problem to a binary
classification problem by selecting 1,500 partners and



TABLE V. RESULTS OF THE SUPERVISED AND UNSUPERVISED
APPROACH TO PREDICT THE PARTNERSHIP BETWEEN USERS.

HIGHLIGHTED FEATURES HAVE AN INFORMATION GAIN > 0.1.

Features
Supervised Unsupervised

AUC Gain SR@1 SR@5 SR@10

O
nl

in
e

So
ci

al
N

et
w

or
k

O+
CN(u,v) 0.648 0.104 0.153 0.329 0.505

O−
CN (u, v) 0.598 < 0.1 0.120 0.329 0.593

O+
JC(u,v) 0.629 0.105 0.186 0.428 0.604

O−
JC(u, v) 0.445 < 0.1 0.186 0.461 0.637

OAA(u, v) 0.604 < 0.1 0.120 0.329 0.549

O+
PS(u,v) 0.654 0.160 0.033 0.230 0.439

O−
PS(u,v) 0.744 0.296 0.044 0.186 0.450

O+
R(u, v) 0.579 < 0.1 0.120 0.384 0.637

GC(u, v) 0.594 < 0.1 0.252 0.472 0.604

GJC(u,v) 0.603 0.134 0.296 0.472 0.604

IC(u, v) 0.508 < 0.1 0.076 0.296 0.538

IJC(u, v) 0.508 < 0.1 0.076 0.296 0.538

PA(u, v) 0.642 < 0.1 0.076 0.505 0.725

PC(u, v) 0.542 < 0.1 0.065 0.373 0.538

PI(u, v) 0.576 < 0.1 0.054 0.241 0.472

PL(u, v) 0.617 < 0.1 0.022 0.164 0.384

PP (u, v) 0.615 < 0.1 0.120 0.362 0.549

L
oc

at
io

n-
ba

se
d

So
ci

al
N

et
w

or
k

LCN (u, v) 0.510 < 0.1 0.384 0.626 0.703

LJC(u, v) 0.499 < 0.1 0.417 0.615 0.703

LAA(u, v) 0.760 < 0.1 0.230 0.626 0.681

LPS(u, v) 0.693 < 0.1 0.241 0.626 0.681

LNO(u, v) 0.520 < 0.1 0.351 0.571 0.659

EC(u,v) 0.821 0.294 0.483 0.736 0.791

ET (u, v) 0.615 < 0.1 0.000 0.131 0.406

EJC(u,v) 0.852 0.372 0.549 0.736 0.802

ECos(u,v) 0.854 0.378 0.538 0.747 0.802

ECCos(u, v) 0.672 < 0.1 0.175 0.417 0.604

EMCos(u,v) 0.788 0.237 0.307 0.560 0.703

RC(u, v) 0.376 < 0.1 0.516 0.681 0.692

RT (u, v) 0.685 < 0.1 0.230 0.582 0.659

RO(u, v) 0.579 < 0.1 0.549 0.670 0.692

AS(u, v) 0.343 < 0.1 0.461 0.681 0.703

AD(u, v) 0.743 < 0.1 0.197 0.582 0.659

acquaintances from the network whose proximity fea-
tures were fed into the WEKA machine learning
suite [23]. To validate the obtained results we used
a ten-fold cross validation approach.

• Predicting Partnership with Unsupervised Learning:
Due to the balanced data set of partners and ac-
quaintances, the binary classification problem has a
baseline of 0.5 when randomly guessing. However,
to better estimation the performance and importance
of the supervised learning algorithm features, it is
recommended to compare the results with an unsu-
pervised learning approach [8]. For that purpose, we
used a simple Collaborative Filtering technique that
was first proposed by Liben et al. [9]: For every user
in a partnership, we rank all acquaintances according
to the features described in Section IV. Next, we
ranked potential partners for every feature separately
and computed the success rate of finding the partner
within a results list of length k.

VI. RESULTS

This section presents the results of the conducted experi-
ments.

A. Comparing Partners and Acquaintances

We computed the mean values and standard errors for all
features of partners and acquaintances and used the Mann-
Whitney-Wilcoxon test, respectively Kolmogorov-Smirnov test
to determine whether they differ significantly. In Table III
and IV we present the differences between partners and
acquaintances for features from the online social network and
the location-based social network.

1) Online Social Network Features: At first glance, Ta-
ble III reveals that partners were less connected in the network
than acquaintances. In particular, we can see that acquain-
tances had approximately 11 common interaction partners
O+

CN (u, v), O−CN (u, v) whereas partners had about 1 partner
in common. Similar observations were made for Jaccard’s
Coefficient O+

JC(u, v), O−JC(u, v), Adamic-Adar OAA(u, v),
and Preferential Attachment Score O+

PS(u, v), O−PS(u, v). For
the communication direction ORE(u, v) we examined bidirec-
tional communication in nearly 50% of all partnerships but in
only 30% of all acquaintances. All topological features were
significantly different.

Although the topological features would let us assume that
partners did not actively participate in the online social net-
work, the interaction data drew a different picture: on average
partners had 19.40 interactions PI(u, v) which was signifi-
cantly more than acquaintances with 13.11. This significant
difference was observed for postings, comments, and loves
as well. Accordingly, we noticed an average message length
PA(u, v) of 27.25 characters per message for partners but only
18.53 characters for acquaintances. On average partners had
2.30 common groups GC(u, v) versus 0.50 for acquaintances
but in contrast none of the interest-based features I(u, v) was
meaningful due to small values and insignificant differences.

2) Location-Based Social Network Features: Topological
features of the location-based social network revealed similar
characteristics as topological features of the online social
network. With a significant difference we observed over 52
common neighbors LCN (u, v) for partners and over 53 com-
mon neighbors for acquaintances. The results of the Adamic-
Adar measure LAA(u, v) and Preferential Attachment Score
LPS(u, v) go in line but Jaccard’s Coefficient LJC(u, v) was
slightly higher for partners.

The overlap of visited regions RC(u, v) with 4.63 was
significantly higher than the according feature of acquaintances
with 3.12 but interestingly, the opposite was observed for the
total number of regions RT (u, v). Similar results were dis-
covered for the common and total number of events EC(u, v),
ET (u, v). Partners met each other on over 11 days compared to
over 6 days of acquaintances and during their co-occurrence
they had a significantly less spatial distance (5.02 vs. 11.70
meter) between them.

B. Predicting Partnership with Supervised Learning

To evaluate the performance of our feature sets from either
sources we utilized popular supervised learning approaches
such as J.48, Logistic Regression and Support Vector Machine
(SVM). We used the area under the ROC curve (AUC) as
our main evaluation metric [24], [25]. As shown in Table II,
we find that Logistic Regression outperformed the remaining



algorithms in all feature sets except the topological features of
the online social network. This one-off feature was neglected
because it did not influence the overall result when all features
were used. The combination of features from the online social
network yielded in a predictability of partnership of 0.878
AUC but the combination of features from the location-based
social network even outperformed this result with 0.905 AUC.
The combination of features from both networks resulted
in 0.933 AUC and therefore outperformed the baseline by
+43.3%.

To further determine the usefulness of each of our features
separately we evaluated the predictive power of each of our
features separately (see below) with the Logistic Regression al-
gorithm and determined their information gain using WEKA’s
attribute selection algorithm. The results of these computations
are presented in Table V.

1) Online Social Network Features: Preferential Attach-
ment Scores for neighbors who sent message O−PS(u, v) in
the online social network had the highest information gain
with 0.296 and corresponding prediction factor of 0.744 AUC.
For homophilic features, Jaccard’s Coefficient for groups
GJC(u, v) was around 0.6 AUC and features based on the
interests of users IC(u, v), IJC(u, v) did not work at all.
Communication based features with number of postings and
loves, respectively average message length could predict a
partnership with about 0.6 AUC.

2) Location-Based Social Network Features: Interestingly,
none of the topological based features in the location-based
social network had an information gain over 0.1 and they were
outperformed by event-based homophilic features. Jaccard’s
Coefficient EJC(u, v) and the cosine similarity EJC(u, v) of
events had the highest information gain and correctly predicted
partnership with about 0.85 AUC. The average distance be-
tween two avatars AD(u, v) had a predictive power of 0.743
AUC. Further, we observed a remarkable low AUC for the
days two avatars were concurrently seen in the same regions
AD(u, v) (0.343) and the number of common regions RC(u, v)
(0.376).

C. Predicting Partnership with Unsupervised Learning

Additionally, we compared the results of the supervised
prediction algorithm with the outcome of an unsupervised
learning algorithm. This is useful to better estimate perfor-
mance in real applications [8] and to support our previous
findings. Hence, we implemented a simple Collaborative Fil-
tering approach to rank potential partners of users according
to their similarity. The success rates that the actual partner was
found in lists of length 1 (SR@1), 5 (SR@5), and 10 (SR@10)
are presented in Table V.

Obviously, we could observe an increasing hit rate with in-
creasing number of suggested users, i.e. increasing list length.
In group related features from the online social network, 29.6%
of all partners were ranked on top of the list. In the domain of
the location-based social data, event related features performed
best and Jaccard’s Distance and the Cosine Similarity were
identified as most valuable features. In over 53% of all cases
the partner of a user was ranked on the top-position in the list.

VII. DISCUSSION AND CONCLUSIONS

In this work we harvested data from two Second Life
related data sources: an online social network with text-based
interactions and a location-based social network with position
data. We modeled the social proximity between users with
topological and homophilic network features and conducted
two experiments.

To answer the first research question RQ1, we evaluated the
differences between partners and acquaintances in the online
social network and the location-based social network. Inter-
estingly, this analysis revealed that partners had less common
neighbors and communication partners than acquaintances
in the location-based social network and the online social
network. Contrary to this observation, homophilic features
revealed a strong affection between partners; we found evi-
dence that partners shared more common groups, had more
interactions between them and attended more events together.
Besides the event features, we also identified a higher number
of jointly visited regions for partners but overall a lesser
number of total regions. We interpret this small number of total
regions combined with low overlap of neighbors in the network
as a sign for intimacy. Users in a partnership are familiar
with their environment and are not anxious to meet new users
in unknown places. This is in line with the observation that
partners were on average spatially closer than acquaintances
during co-occurrence.

For the second research question RQ2, we predicted the
partnership between users and merged the networks and the
according features into one network. We reduced the prediction
problem to a binary classification problem and evaluated our
features using three different learning algorithms. Although
all of them showed similar characteristics, Logistic Regression
performed best which goes along with related work in this
area [26], [13]. Homophilic features were approved as valuable
source for the prediction of partnership in both domains. This
result can be compared to the real world where the alikeness
of two users, i.e. homophily, is a premise for a working
partnership. Furthermore, the combination of features from
two different sources yielded in a significant improvement
of predictability compared to either sources alone. For our
experiment, we finally achieved a predictability of partnership
of 0.933 AUC.

Finally, to answer the third research question RQ3, we
compared the predictive power of single features with a
simple Collaborative Filtering approach. To that end, we
computed the predictability of partnership for every feature
with Logistic Regression and ranked lists of users’ similarity.
The predictive power of topological features performs well
for supervised learning and badly for unsupervised learning.
In contrast, homophilic features of either datasets have a high
predictive power with both concepts. This lets us assume that
homophilic features have a better correlation for tie strength
than topological features in general. In particular we identified
features derived from the attitude of users, like events and
groups, as features with the highest information gain. Further,
interpersonal bonding with spatial distance and number of
postings were detected as evidence for a partnership between
two users.



Our results can be summarized as follows:

• We collected data of the over 44,000 users with
activity in two different networks: an online social
network and a location-base social network.

• Analyzing topological and homophilic features in
these networks revealed significant differences be-
tween partners and acquaintances.

• We identified homophilic features of the location-
based network as most valuable to predict a partner-
ship between users.

In the future, we plan to investigate the mobility patterns of
users and consider their activities in terms of time. We hope to
further improve our results and obtain a deeper insight into the
relationships of users in online social networks and location-
based social networks.
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