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Abstract. Recent research has shown
that the navigability of tagging systems leaves
much to be desired. In general, it was observed
that tagging systems are not navigable if the
resource lists of the tagging system are limited to
a certain factor k. Hence, in this paper a novel
resource list generation approach is introduced
that addresses this issue. The proposed approach
is based on a hierarchical network model. The
paper shows through a number of experiments
based on a tagging dataset from a large online
encyclopedia system called Austria-Forum, that
the new algorithm is able to create tag network
structures that are navigable in a efficient
manner. Contrary to previous work, the method
featured in this paper is completely generic, i.e.
the introduced resource list generation approach
could be used to improve the navigability of
any tagging system. This work is relevant
for researchers interested in navigability of
emergent hypertext structures and for engineers
seeking to improve the navigability of tagging
systems.
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1. Introduction

With the emergence of modern Web
2.0 hypertext systems such as Flickr, De-
licious, CiteULike or LastFM, tagging
systems have emerged as an interesting
alternative to traditional forms of hypertext
navigation and browsing. Tagging systems
allow the user to use a free-form vocabulary
to annotate resources with the so-called
tags [13, 23]. This is done either for
semantic reasons (for example, to enrich
information items with additional meta
data), conversational reasons (for example,
for social signaling) [3] or for organizational
reasons (for example, to categorize infor-
mation) [21]. Regardless of why people tag
[26, 29, 28], tags are typically visualized
as the so-called tag clouds [3]. Basically, a
tag cloud is a selection of tags related to a
particular resource. Upon clicking on a tag
in the tag cloud, a list of resources related
to the tag is presented to the user. Thus, in
addition to traditional browsing (through
a hierarchal taxonomy) and searching (by
entering search terms), tags, respectively tag
clouds, provide users with a third orthogonal
form of navigation within a collection of
resources.

In previous work [15, 16, 7], it was ob-
served that the navigability of tagging sys-
tems leaves much to be desired. In par-
ticular, in [15, 16] we found that the most
common resource list generation approach



used these days in tagging systems gener-
ates network structures which are per se un-
navigable [15, 16]. The issue is this: Lim-
iting the resource list to a certain factor
k, due to interface space restrictions, frag-
ments the bipartite tag network of a tagging
system into large isolated network clusters.
This renders the network unnavigable from a
network-theoretical point of view. However,
in [15, 16] we suggested an approach to over-
come this issue by applying a simple greedy
resource generation strategy. The “trick” is
to select, for every click on a particular tag in
the tag cloud, the k related resources at ran-
dom. In common tag cloud algorithms, for
every tag click the same result list is gener-
ated. Since different resources are selected,
this leads to the effect that the tag network
becomes connected (even for small values
of k) and in theory navigable again. How-
ever, as we have shown in [15], this simple
strategy does not lead to tag networks which
are “good” or even “efficiently” navigable.
Therefore, we have investigated in our recent
work more sophisticated strategies to gener-
ate a k-limited resource list for a particular
tag in the tagging system. In [32] we have
shown that it is possible, at least in theory, if
we apply a hierarchical network model [20]
to select the k resources for the resource list.
The idea is to place the resources in the col-
lection within a hierarchical taxonomy and
to use this taxonomy to generate a probabil-
ity function to select the k resources in the
resource list [32].

In [14] we introduced a hierarchical de-
centralized search approach. In [32] we
used the searcher to simulate a user navigat-
ing a tagging system. In short, simulations
were able to demonstrate that the hierarchi-
cal resource list generation approach gen-
erates tag networks which are significantly
more navigable than tag networks generated
by the most popular resource list generation
approach – the reverse chronological sort-
ing resource list generation algorithm [32].
However, these results can only be approxi-

mate, as long as there is no research into how
people really navigate within a tagging sys-
tem. Hence, a formal experiment was con-
ducted to validate these results empirically.

In [31] we presented results of a formal
experiment. The experiment confirmed the
results from the simulations and showed that
the hierarchical resource list generation ap-
proach creates network structures which are
significantly more navigable than networks
relying on the most commonly used resource
list generation algorithm. Although the ex-
periment was successful, it also confirmed
one important limitation of the approach. In
particular, the experiment proved the the-
oretical assumption that the algorithm per-
forms poorly if the underlaying resource tax-
onomy has high branching factors [20]. For
the experiment in [31], a more or less high
branched resource taxonomy from a tagging
system called Austria-Forum [33] was used.
Hence, in this paper we present an enhanced
version of the algorithm. Contrary to the ap-
proach in [32], the method introduced in this
work is able to generate a fixed branched
resource taxonomy and corresponding “re-
source trails” autonomously, i.e. it is in-
dependent of any given resource taxonomy.
Moreover, the presented approach is generic
and can therefore be used to improve the
navigability of any given tagging system.

The paper is structured as follows: In Sec-
tion 2 the hierarchical resource list genera-
tion algorithm is presented. In Section 4 the
approach is evaluated and in Section 5 the
approach is discussed. Finally in Section 6,
the conclusions are presented.

2. Hierarchical Resource List Con-
struction

The hierarchical resource list gener-
ation algorithm is a novel approach for
resource list generation in a tagging system
[32]. To put it simply, the the approach
places the resources into a hierarchical tax-
onomy and reuses the hierarchy to generate
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Figure 1: Sample resource taxonomy and corresponding hierarchically constructed resource list for
tag “car”. The green nodes are the resources in the taxonomy that have the tag “car” applied. In the
middle of the Figure the resulting probability function is presented and on the right side the generated
resource list is shown.

a probability function to select the resources
in the tagging system. If the taxonomy
provides a constant branching factor b,
the emerging tag network is efficiently
navigable. The idea for this algorithm
was originally derived based upon work
by J. Kleinberg [20] who has investigated
structural clues of small world networks.
Kleinberg showed [20] that if the nodes of
a network can be organized into a hierarchy
with a constant branching factor b, then
such a hierarchy provides a probability
distribution for connecting the nodes in the
network to generate a network that is then
efficiently navigable.

In detail, the algorithm works as follows:
For each click on a tag t(r), where r is a re-
source in the tagging system, the algorithm
returns a k-limited resource where the re-
sources r(t(r))i in the list are selected ran-
domly according to a probability function p
that is calculated from a given resource tax-
onomy T . p is calculated as

e−dist(r(t(r)),r(t(r))i) (1)

The distance dist(r(t),r(t)i) is calculated as

h(r(t))+h(r(t)i)−2h(r(t),r(t)i) (2)

where h(r(t)), h(r(t)i) are the heights of r(t)
and r(t)i in a given resource taxonomy T and
where h(r(t),r(t)i) is the height of the least

common ancestor of r(t) and r(t)i in the re-
source taxonomy T [32] (see Algorithm 1).

In Figure 1 an illustrative example of a
resource taxonomy and the corresponding
hierarchically constructed resource list for
the tag “car” is given. Note that the orange
node in Figure 1 represents the resource that
is currently viewed by the user. The green
nodes are the resources in the taxonomy that
have the tag “car” applied. The resulting
probability function is presented in the mid-
dle of Figure 1 and the generated resource
list is shown on the right side.

2.1. Resource Taxonomy Generation
Algorithm

To overcome the issue of a given re-
source taxonomy Algorithm 1 has been
extended to a generate a fixed branched
resource taxonomy autonomously. In related
work, [17] Heymann et al. (see also [5])
describe an algorithm to generate a tag
taxonomy from tagging data. The input for
the algorithm is the so-called tag similarity
graph, i.e. an unweighted graph where each
tag is a node in the graph, and two nodes
are linked to each other if their similarity is
above a predefined similarity threshold. In
the simplest case, the threshold is defined by
tag overlap, i.e. tags need to share at least
one resource to be linked with each other.



Algorithm 1 Hierarchical Resource List
Generation Algorithm

INPUT: tag t, resource r, max. resource list
size k, resource taxonomy T
OUTPUT: resource list RS
R(t)← get all resources r(t)\r
D← new HashMap[new Array[]]
for each r(t)i ∈ R(t) do

dist← h(r)+h(r(t)i)−2h(r,r(t)i)−1
/* h(r),h(r(t)i) are the heights of the re-
source nodes r,r(t)i in T , h(r,r(t)i) is the
height of the least common ancestor of
r,r(t)i in T */
D[dist].add(r(t)i)

end for
j← 0
RS← new Array[]
while sizeo f (RS) < k && sizeo f (RS) <
sizeo f (D) do

RS[ j]← D[pexp, puni]
/* pexp is a random number with expo-
nential distribution in the interval 0 ≤ x <
sizeo f (D), puni is a random number with
uniform distribution in the interval 0 ≤ x <
sizeo f (D[pexp]) */

end while
sort RS by dist in descending order
return RS

The second prerequisite for the algorithm is
the ranking of nodes in a descending order
according to how central the tags are in
the tag similarity graph. In particular, this
ranking produces a generality order where
the most general tags from a dataset are
highly ranked. The algorithm starts with the
most general tag as the root node of the tree.
The algorithm then proceeds by iterating
through the generality list. For each tag in
the the tree it adds the current processed tag
as a child to its most similar tag. [14]

In this work, a similar algorithmic ap-
proach is developed. Contrary to the algo-
rithm of Heymann et al. the algorithm is able
to generate a fixed branched taxonomy with-
out defining a predefined similarity thresh-
old. In Algorithm 2 the actual algorithm is
presented. In words, the algorithm works as

follows (see also [35]):

The algorithm takes a tag dataset and the
desired taxonomy branching factor as input
parameters. Since the algorithm should gen-
erate a resource taxonomy with the most
general resource of the tagging system as
root node and related and less general re-
sources as children, the algorithm calculates
in the first step degree centrality for all re-
source of the supplied tagging dataset and
stores the centrality-resource pairs into a
map C. Degree centrality was chosen since,
on the one hand, it is computed fast, and on
the other hand, it was observed in previous
research [6] that degree centrality in tagging
systems is highly correlated to sophisticated
centrality measures such as closeness or be-
tweenness centrality. In the next step, the al-
gorithm sorts the resources in C according to
their centrality values in descending order.

Subsequently, the algorithm takes the first
element of C (i.e. the most general re-
source) and sets that resource as the root
node of the resource taxonomy. There-
after, the algorithm starts iterating trough
the elements (resources) already present in
resource taxonomy. For each resource in
the resource taxonomy the algorithm calcu-
lates then the most similar resources (see
getMoreLikeT his in Algorithm 2). Our al-
gorithm calculates cosine similarity between
all co-occurring resources taking also the
t f · id f values of the tag concepts into ac-
count. Additionally, the function returns
only resources that are not already part of the
constructed resource taxonomy. The results
of this function are stored into a map SIM,
with resources as key values and with the
provided similarity values as corresponding
map values. To account for resource gener-
ality we multiply resource similarity values
with their corresponding centrality values.
The final scores are normalized to fall into
the range of [0...1]. After that, the resources
in SIM are sorted by the scores in descend-
ing order. This procedure ensures that the
resources in SIM are not only similar to the
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Figure 2: Branching factor distribution for a re-
source taxonomy with maximum branching b =
5 generated from a tagging dataset in Austria-
Forum [33].

currently processed resource but also sorted
by their generality values. Thereafter the al-
gorithm appends a maximum of b resources
to the currently processed resource. The al-
gorithm stops, if no more similar resources
can be found.

Note, due the fixed branching factor b
the algorithm does not guarantee that all re-
sources of the tagging dataset are contained
in the resulting resource taxonomy. How-
ever, as it will be shown in Table 1 the prob-
ability that one or even more resources are
missing is relatively small due to the high
number of existing links between the re-
sources of the resource-to-resource network
of a given tag dataset. On the other hand, in
a tag taxonomy the probability that one con-
cept is missing is significantly higher. The
reason for this behavior is the fact that the
tag-to-tag network of a tagging system is
typically substantially less connected.

Figure 2 shows the branching factor
distribution for a tag-resource taxonomy
with branching b = 5 generated from the
Austria-Forum tag dataset. For branching
factor b = 5 the algorithm does not generate
a complete b− tree (from levels 1 to 4 the
resulting tree is complete, for levels > 4
the tree is not complete). The reason for
this behavior is the fact that in tag networks
there are resources which are just connected

Algorithm 2 Resource Taxonomy Genera-
tion Algorithm

INPUT: Tag Dataset D, Branching Factor b
OUTPUT: Resource Taxonomy T
C← new HashMap[]
T ← new Tree[]
for each ri ∈ F do

C[ri]← calculate degree centrality
end for
sortByValues(C)
/*sort C by values in descending order*/
T [0]←C[0]
SIM← new HashMap
for i = 0; i < sizeo f (T ); i++ do

/*get all similar resources of T [i] and store
the resources as key values and the similar-
ity values into SIM*/
SIM← getMoreLikeT his(T [i])
for each ri ∈ SIM do

T [ri]← T [ri] ·C[ri]
end for
/*sort the resources in SIM by values in de-
scending order*/
sortByValues(SIM)
for j = 0; j < sizeo f (SIM) and j < b; j++
do

T [i].append(SIM[i])
end for

end for
return T

to a few resources, i.e if the branching factor
b is beneath this threshold the resulting
taxonomy becomes incomplete.

2.2. Resource Taxonomy Labeling Al-
gorithm

In order to give the user information
about how the resources are structured in the
tagging system, tag/title trails are attached
as additional information for each resource
of the tagging system (see Figure 2). In
an experiment [31] conducted recently,
resource trails were attached to the resources
in the result lists of the tagging system. In
other words, in [31] we observed that all 24
participants of the experiment were using



Algorithm 3 Resource Taxonomy Labeling
Algorithm

INPUT: Resource Taxonomy T , Tag Dataset
D
OUTPUT: Tag-resource Taxonomy
COTAGS← new HashMap[newArray[]]
for i = 0; i < sizeof(T); i++ do

T s← getTags(T [i],D)
for j = 0; j < sizeof(Ts); j++ do

cotags← getCoocTags(T s[ j],D)
sort(cotags)
remove all tags from cotags that are not
contained in T [i]
COTAGS[T [i]].add(cotags)

end for
end for
trails← new HashSet[]
for each ri ∈ T do

/*T is traversed in left-order*/
pl← getParentLabels(ri)
for each l j ∈COTAGS[ri] do

if !pl.contains(l j) then
if !(trails.contains(pl.toString() +
l j)) then

T [ri].applyLabel(pl)
trails.add(pl.toString()+ l j)

end if
end if
if T [ri] has no label then

T [ri].applyLabel(getTitle(ri))
end if

end for
end for
return T

resource trail information for orientation
rather than tag information to navigate the
tagging system.

However, since resource trails extracted
from a resource taxonomy would be impos-
sible for humans to read, a labeling algo-
rithm is introduced to make the resource tax-
onomy readable by humans. The basic idea
of the algorithm is it to use tag and title in-
formation to label a particular resource in the
resource taxonomy and to use the resulting
taxonomy to generate tag/title trails which
are attached to the resources in the resource
list (see Figure 3), i.e. we attempt to contex-

tualize the resources.

In general it is a labeling algorithm tak-
ing a given resource taxonomy and a tag-
ging dataset as input parameters. Tag in-
formation is used as label data. The algo-
rithm tries to apply labels to the given re-
source taxonomy in such a way, that they are
uniquely distinguishable and the most de-
scriptive for the given resource. The candi-
date tags are thereby ranked by the method
of tag co-occurrence. However, since it can
happen that resources in the resource taxon-
omy have the same tags in their parent tag
trail, due to the lack of available tags in the
tagging system, additional meta-data is taken
into account. We use title information of the
resources as an additional way for differen-
tiation. In words the algorithm works as fol-
lows (see also [35]):

In the first step the algorithm calculates,
for each resource in the resource taxonomy a
list of co-occurring tags of all resource tags
and stores this list sorted in descending order
into a map. After that, the algorithm tra-
verses the resource taxonomy in left-order.
In this loop the actual labeling procedure is
performed. In detail, the labeling process
looks as follows: For each resource in
the resource taxonomy the corresponding
co-occurrence vector is consulted and the
first label, i.e. the most frequent tag, is
tried to be applied to the currently processed
resource. If the currently used candidate tag
is already part of the tag trail of the currently
processed resource (see variable trails in
Algorithm 2) the next element, i.e. the next
frequent tag label is chosen as candidate tag.
If no uniquely distinguishable tag trail can
be constructed, i.e. the candidate tag label
from the co-occurrence vector is already
present in the tag trail of the resource
additional meta data is considered. We use
title information of the currently processed
resource for this purpose. Note, since tag
and title information can be identical the
proposed method is not completely free of
collisions. However, to fix this issue one can
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Figure 3: Sample of a hierarchically constructed resource list with attached tag/title trails (on the
left) and corresponding resource taxonomy with applied tag/title labels (on the right). Note, compared
to a pure tag taxonomy (see [14] for instance), in a labeled resource taxonomy terms can occur more
than once. The orange node in the resource taxonomy (again) denotes the currently viewed resource
by the user.

Name b n T T Lmax T T Lmean

Res2 2 19,430 17 12.45
Res5 5 19,430 10 5.93
Res10 10 19,430 8 4.44

b = branching factor, n = number of nodes in the resource taxonomy, T T Lmax = maximum
Tag/Title Trail Length, T T Lmean = mean Tag/Title Trail Length

Table 1: Tag/title Lengths for different branching factors. As expected the the resource taxonomy
with the smallest branching factor b = 2 generates the longest trails RT Lmax = 17 and the resource
taxonomy with highest branching factor b = 10 the shortest RT Lmax = 8.

include additional meta data information or
other methods to generate a unique label
such as appending an iterative number for
each label that occurs more than once. The
algorithm stops if all resources of the given
resource taxonomy are labeled.

3. Dataset

The described experiments in this
paper are based on the tag dataset from a
system called the Austria-Forum [4, 33]. Ba-
sically, the Austria-Forum is a large online
encyclopedia similar to Wikipedia provid-
ing the user with approximately 180,000

resources related to Austria. In contrast to
Wikipedia, Austria-Forum structures articles
into a taxonomy and provides an integrated
tagging system [33, 34, 30], which allows
users to assign tags to resources and to
navigate to related resources via tag clouds.
As of October 16, 2010 the Austria-Forum
tag dataset contains 97,908 tag assignments,
13,314 tags, and 19,430 resources.

4. Experiments

In order to evaluate the proposed hi-
erarchical resource list generation approach
five different experiments were conducted.



In this section, the experiments are described
and results are presented.

4.1. Measuring Average and Maxi-
mum Tag/Title Trail Lengths

In the first experiment, we investigated
the average and the maximum resource tax-
onomy depths for different branching factors
b. Since the resulting resource taxonomies
generated by Algorithm 2 are not complete
neither the average nor the maximum depth
could not be estimated by formulas. Hence,
these values were conducted empirically
through an experiment. For the experiment,
three different resource taxonomies named
Res2, Res5 and Res10 with three different
branching factors b = 2,5 and 10 were
generated. In order to compare the resulting
taxonomies against a golden standard tax-
onomy the DMOZ Open Directory Project
[10] (ODP) taxonomy was consulted. This
experiment was conducted to determine
whether or not the resulting tag/title trails
will be in length usable for humans (see also
[18, 36, 24]).

As shown in Table 1 and as expected,
the resource taxonomy with the smallest
branching factor b = 2 generates the longest
tag/title trails T T Lmax = 17 and the resource
taxonomy with highest branching factor
b = 10 generates the shortest T T Lmax =
8. For b = 5 the maximum tag/title trail
length is T T Lmax = 10. On average when
branching factor b = 2, the trail length is
T T Lmean = 12.45. For b = 5, the mean trail
length is T T Lmean = 5.93 and for b = 10
the mean trail length is T T Lmean = 4.44.
The ODP Taxonomy has a mean depth of
6.86 [2]. The maximum depth is 13 [2].
Hence, compared to the ODP taxonomy, the
resource taxonomy with branching factor
b = 5 maps more closely to a human crafted
taxonomy. However, the resource taxonomy
with branching factor b = 10 is most usable
[18, 36, 24] since it generates the shortest
trails of all taxonomies. The resource

taxonomy with branching factor b = 2 is, in
our opinion, not usable.

4.2. Measuring Labeling Collision Rate

In the second experiment, we measured
the number of “collisions” which occurs
when labeling a given resource taxonomy
with different branching factors b (with the
labeling Algorithm introduced in Section 2).
As explained, the labeling algorithm is not
100% collision free. Hence, the experiment
should reveal how many collisions occure in
general if labeling a resource taxonomy with
a given branching b. For this experiment
the three resource taxonomies from the prior
experiment were used. To show the potential
of using tag and title information together
to label a given resource taxonomy we also
conducted an experiment for which we only
used tag information to label the three given
resource taxonomies. As shown in Table
2, for branching factor b = 2 the collision
rate is CRtt = 0.1%, for b = 5 the collsion
rate is CRtt = 0.2% and for b = 10 the
collision rate is CRtt = 0.2%. The collsion
rate is significantly increased if taking only
tag information into account. For b = 2
the collsion rate is CRt = 8.5%, for b = 5
the collision rate is CRt = 12.9% and for
b = 10 the collision rate is CRt = 15.9%.
All in all, one can observe that the higher
the branching factor, the higher the collision
rate.

4.3. Measuring Semantic Structure of
the Labeled Resource Taxonomy

The third experiment investigated
the quality of the semantic structure of the
three labeled resource taxonomies from the
previous experiment. For that purpose, two
different semantic measures were consulted
– the Taxonomic F-Measure [8] and the Tax-
onomic Overlap [22]. Both measures assess
the quality of a given taxonomy against a
gold standard over common concepts. The



Name b n CRtt (%) CRt (%)
Res2 2 19,430 0.1% 8.5%
Res5 5 19,430 0.2% 12.9%
Res10 10 19,430 0.2% 15.9%

b = branching factor, n = number of nodes in the resource taxonomy, CRtt = Collision Rate
with tag/title information, CRt = Collision Rate with tag information only

Table 2: Collision Rates for different resource taxonomies with different branching factor b. As
shown, the higher the branching factor the higher the collision rate. The collision rate is drastically
increased if taking only tag information for labeling into account.

Taxonomic F-measure (=T F) is defined as
the harmonic mean of the Taxonomic Recall
and Precision (see [8] for more details). The
Taxonomic Overlap (=TO) is defined as
TO = T F/(2−T F) [8]. As a gold standard
for this experiment the Germanet [12]
ontology was used (the Austria-Forum tag
dataset contains only German tags). Since
the idea of a labeled resource taxonomy
with attached tag/title labels could be best
compared with a tag taxonomy we compared
the approach with four different famous tag
taxonomies generated by the following
popular tag taxonomy induction algorithms:
Hierarchical K-Means [9], Affinity Propaga-
tion [11, 27], Heymann [17] and Deg/Cooc
[14, 5]. In the experiment, T F and TO val-
ues were measured for all seven taxonomies
generated and benchmarked against each
other. The goal of the experiment was to
determine if the labeling algorithm generates
semantic structures which are more useful
than the structures generated by the popular
tag taxonomy induction algorithms such as
Hierarchical K-Means, Affinity Propagation,
Heymann or Deg/Cooc [14]. Note, since a
label in a resource taxonomy (compared to
tag taxonomy) can occur more than once,
the average semantic cotopy values (see
[8]) for calculating T F and TO values for
the resource taxonomies Res2, Res5 and
Res10 were calculated, i.e. for each label we
measured the semantic cotopy values and
averaged them when there was more than
one label present in the taxonomy (see [8]
for more details).

In Figure 4, results of the semantic
evaluation of the experiment are presented.
As shown, the resource taxonomy with a
branching factor b = 2 generates the lowest
T F = 19% and TO= 11% values of all mea-
sured taxonomies. However, the semantic
values of the resource taxonomies increase
with the higher branching factor. For b = 5,
T F = 29% and TO = 17%. For b = 10,
T F = 34% and TO = 20%. As shown
in Figure 4, the resource taxonomy with
braching factor b = 10 generates higher T F
and TO values than a tag taxonomy based
on the tag taxonomy induction approach
such as Affinity Propagation (T F = 30%,
TO = 18%) and Heymann (T F = 25%,
TO = 14%). However it performs worse
than tag taxonomy based on an induction
algorithm such as Deg/Cooc (T F = 39%,
TO = 24%) and Hierarchical K-Means
(T F = 35%, TO = 21%). The resource
taxonomy with a branching factor b = 5
performs better than the Heymann tag
taxonomy, but worse then all other. All in
all, one could say that resource taxonomies
with branching factors between b = 5− 10
perform on average as good as “pur” tag
taxonomies based on a Affintity Propagation
tag taxonomy induction algorithm. Or, in
other words, the resulting tag/title trails of
a resource taxonomy with braching factors
between b = 5− 10 are in average as good
as the tag/title trails of the tag taxonomy
generated by the Affinity Propagation tag
taxonomy induction algorithm.
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Figure 4: Results of the semantic evaluation of the generated resource taxonomy with applied tag/title
labels using the Austria-Forum tag dataset. As shown in the resource taxonomy, Res5 generates the
lowest T F and TO values of all measured taxonomies. However, the T F and TO values increase with
the higher branching factor b. For b = 10 the semantic structure of the labeled resource taxonomy
Res10 is nearly as good as the K−Means tag taxonomy.

4.4. Measuring Navigability

In order to evaluate the navigability
of the tag networks resulting from the
proposed hierarchical resource list genera-
tion approach, three different types of tag
networks were generated. They all varied in
how the the resource lists were calculated.
In the following list, we describe the tag
networks as they were generated and used
for our further experiments:

Network CHRON: This is the type of tag
network as typically found in tagging sys-
tems such as Delicious, CiteULike or Flickr.
The tag network relies on a resource list gen-
eration algorithm that returns for each click
on a particular tag t in the tagging dataset a k-
limited resource list that is sorted in reverse
chronological order. Contrary to the hierar-
chical resource list generation approach, the
resource lists are statically calculated, i.e. no
mater what resource in the tagging system is
currently viewed by the user it always the
same resource list for a particular tag t cal-

culated [32, 15, 16].
Network RAND: This type of tag net-

work relies on the resource list generation
algorithm that returns for a particular tag t
a different and randomly sorted k-limited re-
source list. Contrary to the chronological ap-
proach, the resource lists are not statically
calculated, i.e. for each click on a tag t(r),
a different resource list is generated.

Network HIERx: This type of tag net-
work relies on the hierarchical resource list
generation approach as introduced in Section
2. For our experiments in this paper three
separate tag networks of this type were gen-
erated. They all vary in the way in which
resource taxonomies were used to generate
the resulting tag networks. As input re-
source taxonomies the three resource tax-
onomies Res2, Res5 and Res10 from Sec-
tion 4.1. were chosen. The resulting net-
works are called Network HIER2, HIER5
and HIER10.

In order to determine whether the gen-
erated tag networks are navigable, network



Name k Nodes Links ED LSCC
CHRON10 10 19,430 660,457 4.22 0.77
RAND10 10 19,430 678,623 4.00 0.99
HIER210 10 19,430 619,641 4.29 0.99
HIER510 10 19,430 622,554 3.99 0.99
HIER1010 10 19,430 625,512 4.30 0.99
HIER510 10 19,430 622,554 3.99 0.99
CHRON50 50 19,430 2,156,133 3.95 0.90
RAND50 50 19,430 2,191,483 3.87 0.99
HIER250 50 19,430 2,086,978 4.05 0.99
HIER550 50 19,430 2,093,926 3.90 0.99
HIER1050 50 19,430 2,097,897 3.86 0.99

LSCC = Largest Strongly Connected Component, ED = Effective Diameter

Table 3: Tag network statistics. According to Kleinberg [19, 20] networks RAND and HIERx are
navigable networks. Network CHRON is unnavigable [19, 20], i.e. not (nearly) all nodes of the
network are contained in the giant component of the network.

properties such as the size of the largest
strongly-connected component (LSCC) and
the effective diameter (ED) were calcu-
lated. From a network-theoretic perspective,
Kleinberg [20] showed that a navigable net-
work can be formally defined as a network
with a low diameter [25] bounded by log(n),
where n is the number of nodes in the net-
work, and an existing giant component, i.e.
a strongly connected component containing
almost all of the nodes. For that experiment
the maximum resource list size k was also
varied to k = 10 and k = 50. This was done
to observe whether or not different values of
k influence the navigability of the different
tag networks. The overall goal of this ex-
periment was to determine whether or not
the tagging system relaying on a hierarchical
resource list generation algorithm produces
tag networks which are more navigable than
tag networks generated by a chronological or
random resource list generation approach.

In Table 3, the network statistics of all
four tag networks are shown. According
to Kleinberg [19, 20] networks RAND and
HIER are navigable networks. In network
CHRON10, 23% and in network CHRON50,
10% of all resources are not within the
giant component of the tag network. Hence

network CHRON is unnavigable [19, 20].
These results go along with the observations
made in [15, 16].

4.5. Measuring Efficiency

In the concluding experiment, we
measured the efficient navigability of the tag
network with a hierarchical decentralized
searcher [1] as introduced in [14]. As de-
fined by Kleinberg, an efficiently navigable
network is a network for which a decentral-
ized searcher exists that is able to navigate
to all nodes of the network in log(n) or at
least in sub-linear to n time, where n are the
number of nodes in the network. In [14] we
have introduced a searcher that is able to
search a tagging system in log(n). However,
contrary to the searcher in [14], the searcher
in this work uses as background knowledge
the resource taxonomy which was utilized
to generate the tag network (see Algorithm
4). Additionally, the searcher in this work is
able to walk along a directed tag network.
In [14], it was limited to a bipartite tag
network. In Algorithm 4, the pseudo code of
the implemented searcher is presented. Note
that the searcher is using as input parameters
a directed resource-resource tag network, a



resource taxonomy, a start and target node
and a maximum number of hops parameter
that defines how many resources the searcher
should at maximum visit before giving up.
For an input taxonomy the searcher is taking
the corresponding resource taxonomy, i.e.
for Network HIER2 resource taxonomy
RES2 is taken, for Network HIER5 resource
taxonomy RES5 is taken, for Network
HIER10 resource taxonomy RES10 is taken
and for network RAND a random resource
taxonomy was generated.

In order to acquire statistically signifi-
cant results, 100,000 random searches (with
a maximum of 10 hops) for each of the net-
works were performed. The start and tar-
get nodes were selected uniform at random.
For the experiment only resource pairs were
considered for which a path was present in
the network. If the target node could not
be found in at least 10 hops or the searcher
was caught in a cycle (we did not recover
the searcher in that case) this was counted
as an error. It is important to note that both
searcher were given the exact same start and
target nodes for all four networks.

In Figure 4 we present the success
rate plots of the hierarchical decentralized
searcher for tag networks RAND and HIERx
and different values of k. As shown, the hier-
archically constructed tag networks outper-
form the random networks significantly. As
also shown in Figure 4, tag network HIER2
is most navigable. Regardless of which
branching factor, the searcher is able to find
nearly 100% of all nodes in this network.
According to Kleinberg’s definition [19, 20]
tag networks HIER2 and HIER5 are also ef-
ficiently navigable network.

5. Discussion

However, even if the experiments
showed that the proposed resource list
generation approach is able to generate tag
networks that are efficiently navigable, the

Algorithm 4 Hierarchical Decentralized
Searcher [14]

INPUT: resource resource graph R, resource
taxonomy T , start node v, target node w, max
hops hopsmax

hops← 0
while v! = w do

if ++hops >= hopsmax then
break

end if
R(v)← get all resources from v ∈ R
distmin← ∞

for each ri ∈ R(v) do
dist← h(ri,T )+h(v,T )−2h(ri,v,T )−1
if dist < distmin then

distmin← dist
v← ri

end if
end for

end while

experiments also revealed that the proposed
approach has also limitations. In particular,
the experiments revealed that there are
limitations regarding the generated resource
taxonomy. For instance, in the first exper-
iment it was observed that it is not useful
to generate a resource taxonomy with small
branching factors since the resulting tag/title
trails could grow too long to be usable. In
the second experiment it was shown, that a
resource taxonomy with higher branching
factors led to tag/title trails that have a higher
probability of not being unique distinguish-
able anymore. In the third experiment, it
was shown that a resource taxonomy with
low branching factors would lead to tag/title
trails which are semantically less useful that
the trails of a labeled resource taxonomy
with higher branching factors. In experiment
five, it was shown that a smaller branched
resource taxonomy will lead to tag networks
that are more navigable.

However, the experiments also showed
that, there is distinctive branching factor b
for which a good trade-off between usability,
semantics and navigability is given. Our
experiments showed that for the Austria-
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Figure 5: Success rates of the hierarchical decentralized for tag networks RAND and HIERx and
different values of k. As shown,the hierarchically constructed tag networks outperform the random
networks most. As also shown in Figure 4, tag network HIER2 is most navigable. Regardless of which
branching factor, the searcher is able to find nearly 100% of all nodes in this network. According to
Kleinberg’s definition [19, 20] tag networks HIER2 and HIER5 are also efficiently navigable network.

Forum tag dataset the optimal branching
factor would be approximately b = 5 in
order to produce resource lists containing
usable tag trails and to generate efficiently
navigable tag networks.

6. Conclusions

In this paper, a novel approach for
resource list generation for tagging systems
was presented. In particular, the paper pre-
sented a resource list generation approach
that is based on a hierarchical network
model. A number of experiments showed
that the approach is able to generate tag
network structures which are efficiently
navigable. Contrary to previous work, the
proposed approach is completely generic,
i.e. the introduced hierarchical resource
list generation approach could be used to
improve the navigability of any tagging
system.
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