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ABSTRACT
Recommender Systems (RSs) have become essential tools in any
video-sharing platforms (such as YouTube) by generating video
suggestions for users. Although, RSs have been e�ective, however,
they su�er from the so-called New Item problem. New item problem,
as part of Cold Start problem, happens when a new item is added to
the system catalogue and the RS has no or little data available for
that new item. In such a case, the system may fail to meaningfully
recommend the new item to any user.

In this paper, we propose a novel recommendation technique
based on visual tags, i.e., tags that are automatically annotated
to videos based on visual description of videos. Such visual tags
can be used in an extreme cold start situation, where neither any
rating, nor any tag is available for the new video item. The visual
tags could also be used in the moderate cold start situation when
the new video item has been annotated with few tags. This type
of content features can be extracted automatically without any
human involvement and have been shown to be very e�ective in
representing the video content.

We have used a large dataset of videos and shown that automat-
ically extracted visual tags can be incorporated into the cold start
recommendation process and achieve superior results compared to
the recommendation based on human-annotated tags.

1 INTRODUCTION
One of the main challenges in Recommender Systems (RS) is the
New Item problem. This problem which is part of a bigger challenge
called Cold Start problem happens when a new item is added to
the item catalogue and no rating has been provided by the users
for that item [13, 32]. In such a case, the RS may fail to e�ectively
recommend that item to users.

One of the recommendation techniques that can remedy the
cold start problem is Content-Based Filtering (CBF) which can ex-
ploit content data (e.g., item tag) in order to compute similarity
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among items and generate relevant recommendation based on con-
tent similarities [11, 12, 42]. In video domain, the content data can
be represented by di�erent features, described with the following
hierarchical levels: High-level features, representing semantics il-
lustrated by the concepts and events happening within a video.
An example can be a plot of the �lm The Good, the Bad and the
Ugly, which showing three gunslingers who are competing to �nd
a buried cache of gold during the American Civil War. Mid-level
features, representing syntactic features with the existing objects
within a video and interactions of these objects with each other. An
example is people, horses and guns in the same �lm. At the lowest
level, Low-level features typically representing stylistic aspects of
videos de�ned by the aesthetic characteristics of the videos. This
includes the design aspects which could picture the speci�c style of
a video production. As an example, in the same movie predominant
colors are yellow and brown.

Traditionally, content-based video recommendation has been
focused on exploiting high-level and mid-level features [4, 22].
While they are e�ective in representing videos, however they are
expensive to acquire as they need human-annotation typically by a
large network of users. Indeed, there are cases where such features
are missing and causing an extreme cases of cold start problem.

In such cases, even the most complicated recommendation algo-
rithms could be unable to generate recommendation of such new
items. In video domain, this is a case where a video is uploaded to
a video-sharing platform and none of the users has yet added any
type of data (e.g., tags).

In this paper, we address this problem and propose a novel fea-
ture set called visual tags. Such features are automatically extracted
and added to the video items. We build predictive models that can
learn the correlation among visual features and the tags added
to other videos. Such models are used to predict the tags for a
new video item with no tags. Such visual tags are then being ex-
ploited in order to generate personalized recommendation for users.
We have performed di�erent experiments in order to evaluate the
recommendation based on visual tags. We have considered two
evaluation scenarios, i.e., moderate cold start and extreme cold start
scenarios. The results have shown the e�ectiveness of the proposed
features in both scenarios in comparison to recommendation based
on human-annotated tags.

It is worth noting that, we focused on recommendation based on
tags as prior studies have shown the superior performance of tags
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in comparison to other types of content-features (e.g., genre) [9].
Furthermore, using visual tags enables the system to include expla-
nation when presenting recommended videos to users. Explanation
may enhance transparency of the system and result in higher user
satisfaction [37]. This is not very feasible with the pure (low-level)
visual features.

2 BACKGROUND
This work is mainly related to two research �elds, i.e., tag-based
RSs and visually-aware RSs [5, 6, 22]. Several prior works have
incorporated human-annotated tags into recommendation process
[1, 16, 17, 27, 29, 40, 41]. One of the prior works [21] integrated tag-
based similarity within an extended Collaborative Filtering (CF) in
order to improve the recommendation. In [14], the authors proposed
a modi�ed version of the SVD++ matrix-factorization model [20] by
replacing the usage of implicit feedback with tagging information.
This results in a substantial improvement of the RS performance.
In [24] another matrix-factorization model was proposed which
expands the item model with latent factors vectors associated to
the features of the items. In [15], SVD++ is again extended with
an approach similar to those described in [14, 24], in order to deal
with a cross-domain recommendation scenario.

The usage of the low-level visual features has drawnminor atten-
tion in RS (e.g., in [8, 25, 31]). This is while this has been extensively
investigated in the other �elds such as computer vision [28, 35].
[2, 19] provide comprehensive surveys on the state-of-the-art tech-
niques related to video content analysis and classi�cation, and
discuss a large number of low-level features (e.g. visual, textual, or
auditory). Authors in [30] propose a framework for movie genre
classi�cation based only on visual features. Moreover, [36] proposes
a deep learning approach to automatically detect the director of a
movie based on low-level visual features. This work di�ers from
the prior works as it proposes visual tags instead of pure visual
features. The advantage of using visual tags is the explainability
of recommendation based on visual tags in comparison to visual
features.

3 PROPOSED METHOD
Through querying YouTube, we obtained a huge dataset of 13923
movie trailers [7, 26, 31] based on the titles available in the Movie-
lens dataset [18]. Prior work showed a high similarity of visual
features extracted from movie trailers and their respective full-
length movies [8].

Our research methodology encompasses the following steps:
Movie Segmentation: every movie is segmented into shots, i.e., se-
quences of consecutive frames captured without interruption of
the camera; Key-Frame Detection: within every shot the middle
frame is selected as representative of the shot (key-frame); Feature
Extraction: every key-frame is analyzed and the visual features are
extracted; Feature Aggregation: the feature vectors are aggregated
over the entire movie to form a feature vector descriptive of the
whole movie; Prediction: aggregated visual feature vectors are used
to train the prediction algorithms.

Movie Segmentation & Key-frame Detection. In order to
segment movies into shots i.e. sequences of consecutive frames
recorded without camera interference, we used a method based

on Color Histogram Distance. This is due to the fact that transition
between two shots of the video is typically very abrupt. By com-
paring the color histogram of every movie frame, the histogram
intersection is computed to compare the activities. Lets denote ⌘C
and ⌘C+1 as histograms of successive frames, then intersection is
computed according to the following equation

s(⌘C ,⌘C+1) =
’
1

min(⌘C (1),⌘C+1 (1)) (1)

where 1 is the index of the histogram bin. By comparing s with a
prede�ned threshold (i.e., 0.75 in our experiment), we are able to
segment the movies down to the constructing shots. Within every
shot, the middle frame is selected as the key-frame.

Visual Feature Extraction. We have extracted a set of visual
features capable of e�ectively capturing the attractiveness of each
(key) frame of the movies. San Pedro and Siersdorfer [33] used a
similar features set to predict popularity of Flicker images. In detail,
10 features are the following [26]:
• Sharpness: measures the clarity and level of details within the
elements of a frame. This feature is related to the brightness
contrast of edges in a frame.

• Sharpness Variation: is calculated via the standard deviation of
all pixel sharpness values.

• Contrast: measures the relative di�erence in brightness or color
of local features in a frame. Contrast is typically de�ned as the
“assessment of the di�erence in appearance of 2 or more parts
of a �eld seen simultaneously or successively”. The root mean
square contrast (RMS-contrast) is often used to compare frames
[33].

• RGB Contrast: is almost identical to the basic contrast feature, ex-
plained before. However, it is extended to the three-dimensional
RGB color space.

• Saturation: measures the colorfulness of the frame relative to the
brightness. In the HSV color space the saturation estimation can
be calculated via the RGB approximation of

5 A0<4_B0CDA0C8>= =
1
#

’
G,~

(G~, with (2)

(G~ =<0G ('G~,⌧G~,⌫G~) �<8=('G~,⌧G~,⌫G~)
where # is the amount of pixels in a frame and 'G~ , ⌧G~ and
⌫G~ are the coordinates of the color of the pixel in sRGB space.

• Saturation variation: measures the variation in saturation via the
sample standard deviation of all pixel saturations in a frame.

• Brightness: measures the average brightness of a frame; It uses a
standard luminance algorithm

5 A0<4_1A86⌘C=4BB =
1
#

’
G,~

.G~, with (3)

.G~ = (0.299 ⇤ 'G~ + 0.587 ⇤⌧G~ + 0.114 ⇤ ⌫G~)
where .G~ denotes the luminance value and # is the amount of
pixels in a frame. 'G~ , ⌧G~ and ⌫G~ are three RGB color space
channels of pixel(x,y).

• Colorfulness: measures the individual color distance of the pixels
in a frame. Therefore, the frame needs to be transferred into
sRGB color space using A6 = ' �⌧ and ~1 = 1/2 (' +⌧) � ⌫.

• Entropy: of a frame is often used to determine how much infor-
mation needs to be encoded by a compression algorithm. As an
example, a frame with illustrating the moon craters has a very
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high edge contrast, which leads to a high entropy. This means
that the frame cannot be compressed very well which suggests
that it can be used to measure the frame’s texture.

• Naturalness: measures the di�erence (or similarity) between a
frame and the human visual perception of the real world, with
respect to colorfulness and dynamic range. Although subjective,
it is an important visual quality metric when it comes to design
[33]. We transfer the frame color space, if not already, to HSL.
Then we use only pixels within the thresholds 20  !  80 and
( � 0.1. In the next step, pixels are grouped into one of the three
sets ‘Skin’, ‘Grass’ or ‘Sky’, based on their H coordinate (hue).
In order to calculate the naturalness of each set, the average
saturation value of the group (`( ) is used.
Feature Aggregation. To form the feature vector description

of a movie, we have aggregated the visual features extracted from
its key-frames. We have performed various aggregation functions,
namelymedian, standard deviation, as well as, 1st & 3rd quartiles
of each visual feature, across all the key-frames of a movie. The
last movie feature is the number of key-frames, within every movie.
This process results in a vector of the length 41 aggregated features
per movie.

Recommendation algorithmWeadopted a classical “K-Nearest
Neighbor” content-based algorithm. Given a set of users D 2 * and
a catalogue of items 8 2 � , a set of preference scores AD8 given by
user D to item 8 has been collected. Moreover, each item 8 2 � is
associated to its feature vector fi . For each couple of items 8 and 9 ,
the similarity score B8 9 is computed using cosine similarity:

B8 9 =
fi)fj
fifj

(4)

For each item 8 the set of its nearest neighbors ##8 is built,
|##8 | <  . Then, for each user D 2 * , the predicted preference
score ÂD8 for an unseen item 8 is computed as follows

ÂD8 =

Õ
9 2##8 ,AD9>0 AD 9B8 9Õ
9 2##8 ,AD9>0 B8 9

(5)

4 RESULTS
4.1 Experiment A: Analysis of Visual Features
After extraction of visual features, we discretized the features by
decomposing them into three classes, i.e., (i) bottom class where
the feature value is lower than the 1st quartile, (ii) middle class
where the feature value is within the 1st and 3rd quartile, and (iii)
top class where the feature value is higher than the 3rd quartile.
Then we go over the features and for a given feature f, compute the
percentage of movies belonging to each one of three classes of that
feature. This results in a descriptive vector for each video allowing
us to link tags to the visual features.

Furthermore, for the aim of reducing the data space, we use
a powerful dimensionality reduction method called T-distributed
Stochastic Neighbor Embedding method (t-SNE) [23]. The result is
plotted in Figure 1. Please note that, every point in this �gure
represents a tag. As shown in the �gure, the tags could be positioned
close to or far from each other, depending on their visual similarity.
Our observation shows that, although the similarity is computed
based on low-level visual features that are not really semantic,

Figure 1: Analyzing user-annotated tags, based on visual fea-
tures within the videos, by applying t-SNE technique.

however the tags that are located close by are semantically related.
For example, as seen in the �gure, the following tags located in the
bottom-middle side of the �gure are semantically related: murder,
ma�a, police, heist, and crime.

4.2 Experiment B: Cold Start Recommendation
We used the visual tags extracted from videos based on low-level
visual features to build a content-based RS. We evaluate the system
under the new item cold start situation. In the extreme cold start,
when a new video has been added to system catalogue with no
rating and no content features (e.g., tags) provided by users, only
visual tags and visual features can be used as they don not need
any human-annotation. In addition to that, we considered also the
moderate cold start where the new item has received no rating but a
few tags from users, that can be used to generate content-based rec-
ommendation. We compared the performance of recommendation
based on (automatic) visual tags and (automatic) visual features,
against (human-annotated) tags when the number of tags is in-
creased from 1 to 10, in terms of prediction accuracy (i.e., MAE and
RMSE) and Coverage [34]. We focused on recommendation based
on tags as prior studies have shown the superior performance of
tags in comparison to other types of content-features (e.g., genre)
[9].

Figure 2 (left) shows the results in terms of MAE. As it can be
seen, in the early phase of the cold start, by far the best result
has been achieved by recommendation based on visual features
and visual tags with lowest MAE values. However, when su�cient
number of tags are collected (7 tags), tag-based recommendation
overtakes recommendation based on these features.

Similar results have been observed for the RMSE metric. Figure
2 (middle) presents the results for RMSE. As it can be seen, again,
in the early stage of the cold start, the recommendation based on
visual features and visual tags express substantially better perfor-
mance by achieving the lowest RMSE values. This is the case up
to when 8 tags are collected by the system for the video items.
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Figure 2: Comparing recommendation based on di�erent features, in terms of: (left)MAE, (middle) RMSE, and (right) Coverage.
However, as soon as 9 tags (and more) are collected, the tag-based
recommendation outperforms the recommendation based on other
features by achieving a lower RMSE value.

This is an interesting outcome and it shows that in the extreme
cases of cold start situation, when no or very few tags are avail-
able, (classical) tag-based recommendation may fail to predict the
true preferences of the users and properly generate relevant rec-
ommendation for users. However, in the moderate cold start, when
larger number of tags are collected from users, the tag-based rec-
ommendation overtakes recommendation based on visual tags and
features.

We have also compared the performance of recommendation
based on these content features, in terms of Coverage, i.e., percent-
age of ratings that recommender can predict over all missing and
available ratings. Figure 2 (right) shows the obtained results. In
terms of coverage, the best results have been achieved by visual
features and visual tags. Due to the nature of the visual features,
represented as a full matrix with no sparsity (see Figure ??), rec-
ommendation based on visual features is capable of predicting the
entire ratings and achieving 100% coverage, even in the extreme
cold start situation. Visual tags can achieve similar performance
with automatically generating 5 and more visual tags. This is possi-
ble for human-annotated tags after collecting 9 and more tags.

Overall, these promising results illustrate the signi�cant power
of visual tags and visual feature, with no need for costly human-
annotation, in dealing with the extreme and moderate cases of new
item cold start problem.

5 CONCLUSIONS & FUTUREWORK
This paper addresses the cold start problem by proposing recom-
mendation based on visual tags. These are novel form of content
features that can be automatically made for new items, where nei-
ther any rating nor any tag is available for that item. We have
conducted a preliminary experiments to better understand the po-
tential correlations among visual features and user tags. This help
us to better model and implement the mechanism to extract visual
tags. In addition to that, we have evaluated the quality of recom-
mendations based on visual tags and compared it to the actual tags
collected from users in the cold start situation. The observed results

are promising and show the power of visual features in dealing
with even the extreme cases of cold start problem.

In future, we will elicit user-generated video content from other
video sharing social networks (e.g., Instagram). We also plan to
integrate and put a new layer over our model using the recent
innovations [38, 39] in order to obtain the implicit preferences of
users through their facial appearance.Wewill use noted innovations
in order to study the potential correlation between users’ facial
expressions versus the movie features. We will also explore the
potential of novel interaction design when developing a visually-
aware movie recommender system [3, 10].
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