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ABSTRACT
Tagging introduces an intuitive and easy method to organize re-
sources in information systems. Although tags exhibit useful prop-
erties for e.g. personal organization of information, recent research
has shown that the navigability of social tagging systems leaves
much to be desired. When browsing social tagging systems users
often have to navigate through huge lists of potential results be-
fore arriving at the desired resource. Thus, from a user point of
view tagging systems are typically hard to navigate. To overcome
this issue, we present in this paper a novel approach to supporting
navigation in social tagging systems. We introduce tag-resource
taxonomies that aim to support efficient navigation of tagging sys-
tems. To that end, we introduce an algorithm for the generation of
these hierarchical structures. We evaluate the proposed algorithm
and hierarchies from a theoretical, semantic and empirical point of
view. With these evaluations we are able to show the high perfor-
mance and usefulness of the proposed hierarchies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Tag Navigation

Keywords
Tagging systems, navigation, tag taxonomy, resource taxonomy

1. INTRODUCTION
Tagging provides an easy and intuitive way to annotate, organize
and retrieve resources on the web. For this reason the popularity of
social tagging systems has increased tremendously in recent years.
To give some examples: Delicious1 enables the annotation of per-
sonal bookmarks with tags, Flickr2 allows users to describe their

1http://www.delicious.com/
2http://www.flickr.com/

photos by tagging and Youtube3 supports easier finding of videos
via tags by content creators.

While there has been a lot of work on the structure of social tagging
systems, little is known about the ways users use and navigate such
systems. Previous work by Chi et al. [7] observed that the naviga-
bility leaves much to be desired. There, the authors showed that
the number of new tags does not grow as quickly as the number of
tagged resources in mature social tagging systems such as BibSon-
omy, CiteULike or Delicious. Therefore a lot of tags exist that refer
to a large number of documents within such systems. To illustrate
this problem from a user perspective: when users click on a popular
Delicious tag such as “web” they retrieve 6.5 million resources in
reverse chronological order – thus, rendering the system unusable
from a navigational point of view.

To overcome this issue recent research has investigated methods
and strategies to make tagging systems more navigable. One promi-
nent example of such endeavors are so-called tag taxonomies [18]
– a method which allows the user to navigate to related concepts
(tags) in a tagging system in a hierarchical and efficient manner
(see also [16] for evaluation of several similar approaches). In
this paper we introduce the notation of tag-resource taxonomies.
Contrary to the idea of tag taxonomies, this approach enables the
users not only to quickly navigate to related concepts but also to
resources from a tagging system. With the approach of tag tax-
onomies, as it will be shown in this paper, efficient navigation to
the resources of the tagging system is not possible. In a theoretical,
semantic and empirical evaluation we show a high performance and
usefulness of tag-resource taxonomies. To the best of our knowl-
edge this is the first work that describes the notion of tag-resource
taxonomies. Moreover, this approach significantly improves navi-
gability of social tagging systems when compared with tag taxon-
omy approaches.

This paper is structured as follows: In Section 2 we introduce a
novel approach to construct tag-resource hierarchies and illustrate
the algorithms that were created for this purpose. This is followed
by Section 3 explaining our evaluation. Section 4 gives an overview
of related work. Finally Section 5 we conclude our findings and
point to future work.

2. APPROACH
To tackle the issue of poor navigability in tagging systems, we in-
troduce a novel approach to generate tag-resource taxonomies. The

3http://www.youtube.com/
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Figure 1: Tag Taxonomy vs. Tag-Resource Taxonomy.

goal of the approach is to offer the user a simple tool to navigate the
tagging system in an efficient way. According to Kleinberg [20],
efficient navigation in a network is possible if all resources are
navigable in a polynomial of log(n), where n is the number of
resources in the network. With the approach of tag-resource tax-
onomies, and as it is shown in Section 2.1, this prerequisite is ful-
filled, i.e. it is possible to navigate a tagging system in a polynomial
of log(n).

Basically, a tag-resource taxonomy is a hierarchy containing both
resources and tags. The basis of a tag-resource taxonomy is the
so-called resource taxonomy. A resource taxonomy is a hierarchy
where the resources of a tagging system are arranged in an unique
and taxonomic way, i.e. each resource of the tagging system occurs
only once and parent nodes are more general than their child nodes.

Given such a resource taxonomy we construct the final tag-resource
taxonomy by using a labeling algorithm that applies tag informa-
tion to each resource in a descriptive and general manner. Hence,
each resource in the resource taxonomy has one tag label attached
to describe the underlying resource. The resulting tag-resource tax-
onomy presented to the user is then a tag hierarchy where the tags
refer to a constant number of resources.

Figure 1 gives an example of a tag taxonomy compared to a tag-
resource taxonomy. In a tag taxonomy tags appear only once in
the hierarchy. However, resources can be referred by different tags.
In a tag-resource taxonomy on the other hand resources occur only
once while tags can appear on multiple and on different levels.

2.1 Why Usefulness of Tag Taxonomies for
Navigation is Limited

2.1.1 Maximum Number of Clicks
A tag taxonomy allows the user to navigate to a designated tag
(concept) efficiently, but navigation to a particular resource is still
a problem due the so-called pagination effect. As shown by [14]
in tagging systems the tag-resource distribution follows a power-
law function (see Figure 2), i.e. there are many tags that refer to
a large number of resources. In BibSonomy or CiteULike for in-
stance there are tags, which refer to hundreds or even thousands of
resources. To make such frequently used tags still usable for the
user, developers typically paginate the result list of such tags by
a certain factor k. Hence, in the worst case the user has to click
through the whole paginated result list to find the desired resource.

In detail, in the worst case the user would have to click

max{click(Ttag)} =
|max{t}|

k
+max{depth(Ttag)} (1)

times to reach a designated target resource with the approach of a
tag taxonomy.

The term |max{t}| in Equation 1 describes the size of the most
frequently used tag in the tagging system. The term k stands for
the pagination factor and max{depth(Ttag)} denotes the maxi-
mum depth of the tag taxonomy. As shown in [30] the size of the
most frequently used tag can be estimated as |max{t}| = c1 ·
|r|, where c1 is a constant typically ranging between [0.1, ..., 0.2]
and |r| is the number of unique resources in the tagging system.
max{depth(Ttag)} can be estimated as, logb/2 |t|, supposing that
Ttag is a complete and fixed branched tree with branching factor
b. The factor |t| describes the number of unique tags in the tagging
system. |t| can be estimated as |t| = c2 · |r|, where c2 is a constant.
Therefore, Equation 1 can be formalized as

max{click(Ttag)} =
c1 · |r|
k

+ logb/2(c2 · |r|), b ≥ 2 (2)

or

max{click(Ttag)} ≈
c1 · |r|
k

(3)

supposing that logb/2(c2 · |r|)� c1·|r|
k

.

By generating a tag-resource taxonomy the worst case scenario is
significantly better, especially for large numbers of |r|. Suppose the
tag-resource taxonomy Tres is complete and has a fixed branching
factor b, with b = k. A user would have to click

max{click(Tres)} = max{depth(Tres)} = logk/2 |r| , k ≥ 2
(4)

times in the worst case to reach a designated target resource. Then
for large values of |r| we have:

logk/2 |r| �
c1 · |r|
k

(5)

Hence, according to the definition of Kleinberg [20] (see Section 2),
and contrary to tag taxonomies, tag-resource taxonomies allow the
user to navigate to the resources of a tagging system in an efficient
manner, i.e. in a polynomial of log(n).

To give an example: Let us calculate the number of maximum
clicks for the tag datasets as presented in Table 1 and compare the
resulting tag taxonomy and tag-resource taxonomy for k = 10.
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Figure 2: Tag distributions of the three data sets.

As shown in Table 2 (see max{click(Ttag)}) with a tag taxon-
omy the user would have to click 184 times in the Austria-Forum
tag dataset, respectively 5, 278 and 20, 799 times in the BibSon-
omy and CiteUlike tag dataset, to reach a desired resource in the
worst case. Compared to this, with a tag-resource taxonomy, a
user would have to click only 6.1 times in the Austria-Forum, 7.7
times in the BibSonomy and 8.5 times in the CiteULike tagging
system to reach any designated target resource in the worst case
(see max{click(Tres)}).

Austria-Forum [2] BibSonomy [8] CiteULike [5]

|r| 19,430 233,712 949,851
|t| 13,314 26,285 163,642
|max{t}| 1,838 52,777 207,990
α 2.2 1.9 2.0

Table 1: Statistics of Austria-Forum, BibSonomy and CiteU-
Like tag dataset.

Austria-Forum BibSonomy CiteULike

max{click(Ttag)} 184 5,278 20,799
max{click(Tres)} 6.1 7.7 8.5

Table 2: Tag Taxonomy vs. Tag-Resource Taxonomy: Maxi-
mum number of clicks for k = 10.

2.1.2 Number of Paginated Tags
Now, in order to calculate the number of tags suffering from the
pagination effect we define the following equations: Since we know
that the tag distribution (see Figure 2) has power-law qualities we
approximate the number of paginated tags |tp| as follows [9]

ri =
α− 1

tmin
·
(

ti
tmin

)−α
, tmin > 0 (6)

The parameter α can be approximated with the method of maxi-
mum likelihood as

α ∼= 1 + |t|

 |t|∑
i=1

ln
ti
tmin

−1

(7)

With ri = k and tmin = 1, resolved by tp the number of paginated
tags |tp| is be then

|tp| = |t| ·
(
α

k
− 1

k

)( 1
α )

(8)

Example: Let us calculate the number of paginated tags for the tag
datasets as shown in Table 1 for k = 10. Then, as shown in Table

3, within the Austria-Forum dataset 38% of all tags suffer from
the pagination effect, respectively 28% for in the BibSonomy tag
dataset and 32% in the CiteULike tag dataset. Or in other words,
for a commonly used resource list of the length of k = 10, nearly
1/3 of all tags suffer from the pagination effect, i.e. the resources
of such tags are not navigable in an efficient way!

Austria-Forum BibSonomy CiteULike

|tp| (%) 5079 (38%) 7401 (28%) 51748 (32%)

Table 3: Number of paginated tags for k = 10.

2.1.3 Mean Number of Clicks
Last but not least, we can approximate the mean number of clicks a
user would need to reach a designated target resource in a tagging
system navigating via a tag-resource taxonomy as follows:

mean{click(Tres)} = logk(|r|) (9)

The mean number of clicks with a tag taxonomy can be approxi-
mated as:

mean{click(Ttag)} = logk(|t|) +
1

|t|

|t|∑
i=1

ri
k

(10)

In Table 4 example calculations for the mean number of clicks of
tag taxonomies and tag-resource taxonomies with different branch-
ing factors k for different tag datasets are presented. As shown,
on average, tag-resource taxonomies support the user with signif-
icantly less clicks (see mean{click(Tres)}) in navigating the re-
sources of a tagging system than the approach of tag taxonomies
(see mean{click(Ttag)}).

k Austria-Forum BibSonomy CiteULike

mean{click(Tres)} 2 14.2 17.8 19.8
mean{click(Ttag)} 2 29.5 22.4 30.7

mean{click(Tres)} 5 6.1 7.6 8.5
mean{click(Ttag)} 5 11.6 9.2 12.3

mean{click(Tres)} 10 4.3 5.3 5.9
mean{click(Ttag)} 10 6.4 5.6 7.3

Table 4: Tag Taxonomy vs. Tag-Resource Taxonomy: Mean
number of clicks for different branching factors k.



2.2 Description of the Algorithm
2.2.1 Resource Taxonomy Generation Algorithm

As described in Section 2 the basis of the tag-resource taxonomy is
the so-called resource taxonomy – a taxonomy where the resources
of the tagging system are arranged in a taxonomic manner. In order
to generate a resource taxonomy from tagging data we developed
Algorithm 1. In words, the algorithm works as follows:

The algorithm takes a tag dataset and the desired taxonomy branch-
ing factor as input parameters. Since the algorithm should generate
a resource taxonomy with the most general resource of the tagging
system as root node and related and less general resources as chil-
dren, the algorithm calculates in the first step degree centrality for
all resource of the supplied tagging dataset and stores the centrality-
resource pairs into a map C. Degree centrality was chosen since,
on the one hand, it is computed fast, and on the other hand, it was
observed in our previous research [4] that degree centrality in tag-
ging systems is highly correlated to sophisticated centrality mea-
sures such as closeness or betweenness centrality. In the next step,
the algorithm sorts the resources in C according to their centrality
values in descending order.

Subsequently, the algorithm takes the first element of C (i.e. the
most general resource) and sets that resource as the root node of
the resource taxonomy. Thereafter, the algorithm starts iterating
trough the elements (resources) already present in resource taxon-
omy. For each resource in the resource taxonomy the algorithm cal-
culates then the most similar resources (see getMoreLikeThis in
Algorithm 1). Our algorithm calculates cosine similarity between
all co-occurring resources taking also the tf · idf values of the
tag concepts into account. Additionally, the function returns only
resources that are not already part of the constructed resource tax-
onomy. The results of this function are stored into a map SIM ,
with resources as key values and with the provided similarity val-
ues as corresponding map values. To account for resource general-
ity we multiply resource similarity values with their corresponding
centrality values. The final scores are normalized to fall into the
range of [0...1]. After that, the resources in SIM are sorted by
the scores in descending order. This procedure ensures that the
resources in SIM are not only similar to the currently processed
resource but also sorted by their generality values. Thereafter the
algorithm appends a maximum of b resources to the currently pro-
cessed resource. The algorithm stops, if no more similar resources
can be found.

Note, due the fixed branching factor b the algorithm does not guar-
antee that all resources of the tagging dataset are contained in the
resulting resource taxonomy. However, as it will be shown in Sec-
tion 5 the probability that one or even more resources are missing
is relatively small due to the high number of existing links between
the resources of the resource-to-resource network of a given tag
dataset. On the other hand, in a tag taxonomy the probability that
one concept is missing is significantly higher. The reason for this
behavior is the fact that the tag-to-tag network of a tagging system
is typically substantially less connected.

2.2.2 Tag-Resource Taxonomy Generation Algorithm
To produce the final tag-resource taxonomy on the basis of gen-
erated resource taxonomy we developed Algorithm 2. In general
it is a labeling algorithm taking a given resource taxonomy and a
tagging dataset as input parameters. Tag information is used as la-
bel data. The algorithm tries to apply labels to the given resource
taxonomy in such a way, that they are uniquely distinguishable and

Algorithm 1 Resource Taxonomy Algorithm
INPUT: Tag Dataset D, Branching Factor b
OUTPUT: Resource Taxonomy T
C ← new HashMap[]
T ← new Tree[]
for each ri ∈ F do

C[ri]← calculate degree centrality
end for
sortByV alues(C)
/*sort C by values in descending order*/
T [0]← C[0]
SIM ← new HashMap
for i = 0; i < sizeof(T); i++ do

/*get all similar resources of T [i] and store the resources as key values
and the similarity values into SIM*/
SIM ← getMoreLikeThis(T [i])
for each ri ∈ SIM do

T [ri]← T [ri] · C[ri]
end for
/*sort the resources in SIM by values in descending order*/
sortByV alues(SIM)
for j = 0; j < sizeof(SIM) and j < b; j++ do

T [i].append(SIM [i])
end for

end for
return T

Algorithm 2 Tag-Resource Taxonomy Algorithm
INPUT: Resource Taxonomy T , Tag Dataset D
OUTPUT: Tag-resource Taxonomy
COTAGS← new HashMap[newArray[]]
for i = 0; i < sizeof(T); i++ do

Ts← getTags(T [i], D)
for j = 0; j < sizeof(Ts); j++ do

cotags← getCoocTags(Ts[j], D)
sort(cotags)
remove all tags from cotags that are not contained in T [i]
COTAGS[T [i]].add(cotags)

end for
end for
trails← new HashSet[]
for each ri ∈ T do

/*T is traversed in left-order*/
pl← getParentLabels(ri)
for each lj ∈ COTAGS[ri] do

if !pl.contains(lj) then
if !(trails.contains(pl.toString() + lj)) then

T [ri].applyLabel(pl)
trails.add(pl.toString() + lj)

end if
end if
if T [ri] has no label then

T [ri].applyLabel(getT itle(ri))
end if

end for
end for
return T

the most descriptive for the given resource. The candidate tags
are thereby ranked by the method of tag co-occurrence. However,
since it can happen that resources in the resource taxonomy have
the same tags in their parent tag trail, due to the lack of available
tags in the tagging system, additional meta-data is taken into ac-
count. We use title information of the resources as an additional
way for differentiation.

In words the algorithm works as follows: In the first step the algo-
rithm calculates, for each resource in the resource taxonomy a list
of co-occurring tags of all resource tags and stores this list sorted



Name b n max{click(Tres)} mean{click(Tres)}
Res2 2 19,430 17 12.45
Res5 5 19,430 10 5.93
Res10 10 19,430 8 4.44

Table 5: max{click(Tres)} and mean{click(Tres)} for different branching factors b.

in descending order into a map. After that, the algorithm traverses
the resource taxonomy in left-order. In this loop the actual labeling
procedure is performed. In detail, the labeling process looks as fol-
lows: For each resource in the resource taxonomy the correspond-
ing co-occurrence vector is consulted and the first label, i.e. the
most frequent tag, is tried to be applied to the currently processed
resource. If the currently used candidate tag is already part of the
tag trail of the currently processed resource (see variable trails in
Algorithm 2) the next element, i.e. the next frequent tag label is
chosen as candidate tag. If no uniquely distinguishable tag trail can
be constructed, i.e. the candidate tag label from the co-occurrence
vector is already present in the tag trail of the resource additional
meta data is considered. We use title information of the currently
processed resource for this purpose. Note, since tag and title infor-
mation can be identical the proposed method is not completely free
of collisions. However, to fix this issue one can include additional
meta data information or other methods to generate a unique label
such as appending an iterative number for each label that occurs
more than once. The algorithm stops if all resources of the given
resource taxonomy are labeled.

Figure 3 shows the branching factor distribution for a tag-resource
taxonomy with branching b = 5 generated from the Austria-Forum
tag dataset. For branching factor b = 5 the algorithm does not
generate a complete b − tree (from levels 1 to 4 the resulting tree
is complete, for levels > 4 the tree is not complete). The reason
for this behavior is the fact that in tag networks there are resources
which are just connected to a few resources, i.e if the branching
factor b is beneath this threshold the resulting taxonomy becomes
incomplete.

3. EVALUATION
Now, since we have shown in theory that the approach of the so-
called tag-taxonomies allows the user to navigate to the resource of
a tagging system in an efficient way, we will provide in the follow-
ing section results of four different experiment to show the useful-
ness of the proposed approach also in a practical setting.

3.1 Dataset
For the experiments, we used the tag dataset from the Austria-
Forum [28]. The Austria-Forum is a large online encyclopedia sim-
ilar to Wikipedia providing the user with around 180, 000 resources
on topics related to Austria. In contrast to Wikipedia, Austria-
Forum offers an integrated tagging system [29], which allows users
to assign tags to resources and to navigate to related resources via
tag clouds. As of October 16th, 2010 the Austria-Forum tag dataset
contains 13, 314 tags, 19, 430 resources and 97, 908 tag assign-
ments (see also Table 1).

3.2 Measuring the Average and Maximum
Number of Clicks and the Drop Rate

In a first experiment we investigated average and maximum tag-
resource taxonomy depths for different branching factors b in order
to measure the number of clicks a user would need to reach a des-
ignated target resource in the taxonomy. Furthermore we examined
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Figure 3: Example of a branching factor distribution for a tag-
resource taxonomy with maximum branching b = 5.

the number of missing resources (=drop rate) after the generation of
a tag-resource taxonomy from tagging data with different branch-
ing factors b.

Since the resulting tag-resource taxonomies generated by Algo-
rithm 2 are not complete the average nor the maximum depth of
the taxonomy can be estimated by formulas. If the tag-resource
taxonomy was complete, we could calculate the maximum number
of clicks asmax{click(Tres)} = logb/2(n), where n are the num-
ber of nodes in the taxonomy. Hence, these values were conducted
empirically through an experiment.

For the experiment three different tag-resource taxonomies named
Res2, Res5 and Res10 with three different branching factors b =
2, 5 and 10 were generated. In order to compare the resulting tax-
onomies against a golden standard taxonomy the DMOZ Open Di-
rectory Project (ODP) taxonomy4 was consulted. This experiment
was conducted to determine whether the generated tag-resource
taxonomy would be usable or not.

As shown in Table 5 the tag-resource taxonomy with the smallest
branching factor b = 2 is the deepest, i.e. a user would need 17
clicks to reach a target resource in the worst case. On the other,
and as expected the tag-resource taxonomy with highest branching
factor b = 10 is less deepest taxonomy, i.e. in the worst case a user
would have to click 8 times to reach a desired resource. For b = 5
the worst case 10 clicks. On average for branching factor b = 2
the mean number of clicks is 12.45. For b = 5 the mean number
of clicks is 5.93 and for b = 10 4.44 clicks. The ODP Taxonomy
has a mean depth of 6.86 [1]. The maximum depth is 13. Hence,
compared to the ODP taxonomy the tag-resource taxonomy with
branching factor b ≥ 5 will be most usable.

In order to measure the number of missing resources (=drop rate)
after the generation process of the taxonomies, we simply calcu-
lated the number of resources contained in tag-resource taxonomies

4http://www.dmoz.org



Res2, Res5 and Res10 and compared it to the number of unique
resources contained in the original Austria-Forum tag dataset. As
shown in Table 5 and represented as parameter n none of the re-
sources dropped during the tag-resource taxonomy generation pro-
cess. The reason for this behavior is the high number of existing
links between the resources of the resource-to-resource network of
the Austria-Forum tag dataset.

3.3 Measuring the Collision Rate
In the second experiment we measured the number of collisions
when generating a tag-resource taxonomy with different branching
factors b. As explained the tag-resource generation algorithm is
not to 100% collision free, i.e. it could happen that in a tag trail
of a given resource the same tags occurs twice or even more of-
ten. Hence, the goal of this experiment was to reveal how many
collisions occur in general if a tag-resource taxonomy with a given
branching b is created. For this experiment we used the three re-
source taxonomies from the former experiment. Table 6 shows col-
lision rates for the three generated tag-resource taxonomies. All in
all, we observe that the collision rate is relatively small. However
to make the approach totally collision free one might use additional
metadata as described in Section 2.2.

Name b n CR (%)

Res2 2 19,430 0.1%
Res5 5 19,430 0.2%
Res10 10 19,430 0.2%

Table 6: Collision Rates (CR) for different resource taxonomies
with different branching factor b.

3.4 Measuring the Semantic Structure of the
Tag-Resource Taxonomy

In the third experiment we measured the quality of the semantic
structure of three tag-resource taxonomies that were generated for
the two former experiments.

For that purpose, we consulted two different semantic measures
– the Taxonomic F-Measure(in short TF) [10] and the Taxonomic
Overlap(TO) [22]. Both measures identify the quality of a given
taxonomy against a golden standard via common concepts. We
used Germanet5 as golden standard for the experiment since the
Austria-Forum tag dataset contains only German tags.

To determine the overall semantic quality of our three generated
tag-taxonomies four tag taxonomies on the basis of the following
popular tag taxonomy induction algorithms were generated – Hi-
erarchical K-Means [11], Affinity Propagation [12, 25], Heymann
[18] and Deg/Cooc [16, 3]. In the experiment, TF and TO val-
ues for all seven taxonomies were measured and compared against
one another. The goal of the experiment was to study how semantic
structures generated by the tag-resource induction algorithm (Algo-
rithm 2) compare to semantic structures produced by other popular
tag taxonomy induction algorithms such as Hierarchical K-Means,
Affinity Propagation, Heymann or Deg/Cooc [16].

Figure 4 shows the results of the semantic evaluation of the exper-
iment. We observe, the higher the branching factor the better the
semantic structure of the generated tag-resource taxonomies. The
results indicate that tag-resource taxonomies with branching fac-
tors between b = [5...10] perform on average as good as normal

5http://www.sfs.uni-tuebingen.de/GermaNet/
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Figure 4: Results of the semantic evaluation of the three gener-
ated tag-resource taxonomies Res2, Res5 and Res10.

tag taxonomies based on a Affinity Propagation tag taxonomy in-
duction algorithm.

3.5 Empirical Analysis
In order to conduct whether the approach of a tag-resource taxon-
omy is also usable for humans we conducted a user study based on
the ideas of [27].

First, we took the tag-resource taxonomy with branching factor
b = 10 and extracted 100 tag trails uniformly at random from the
tag-resource taxonomy. After that, a Deg/Cooc tag taxonomy with
a maximum branching factor of b = 10 was generated in order to
compare our approach of a tag-taxonomy to an existing method.
Again, 100 tag trails were extracted uniformly at random from the
generated tag taxonomy. Since shorter concept trails are typically
evaluated better, we chose tag trails from both taxonomies that had
a minimum tag trail length of 3 concepts (excluding the root node).
After that, we presented the trails of both taxonomies in random
order and generated an online test containing 200 tag trails, 837
relations and 1, 037 concepts. Each of our users had to evaluate the
exact same tag trails. The study participants received instructions
on how to rate the trails and an exemplary taxonomy. During the
test the users were asked to rate the trails according to the classifi-
cation schema presented in Table 8.

Classification Description

Correct Correct hierarchy relation
Related Correct relation, but not hierarchical

or reverse hierarchical
Equivalent Synonym
Not Related The relations do not have anything

to do with each other
Unknown The evaluator does not recognize

the meaning of the tag(s)

Table 8: Classification Labels for the User Evaluation.

Nine test subjects from three different departments at our university
participated in the experiment. All participants were experienced
computer users and familiar with user studies and the evaluation of
concept hierarchies. The study was conducted between April 25th

and 28th of 2011.

Table 7 shows the classification results of the user study. Compared
to a tag taxonomy comprising only tags we see that concept rela-
tions of a tag-resource taxonomy with a branching factor b = 10 are



Name b Correct (%) Related (%) Equivalent (%) Not Related (%) Unknown(%)

Deg/Cooc10 10 33.2 27.3 13 21.9 5.1
Res10 10 27.3 36.2 12.3 19.8 4.2

Table 7: Results of the empirical analysis of the tag-resource taxonomy with branching factor b = 10 compared to a Deg/Cooc tag
taxonomy with branching factor b = 10.

only to 5% less hierarchically arranged than the tag concepts of the
in theory best semantically correct tag taxonomy approach the so-
called Deg/Cooc tag taxonomy induction algorithm. Regarding the
relatedness of the tag concepts we can observe that the tag-resource
taxonomy was rated to 9% better than the Deg/Cooc tag taxon-
omy. Overall, the rating for the not related tags for both taxonomies
was relatively small, taking into account that the maximum branch-
ing factor in both taxonomies was set to relatively small value of
b = 10.

4. RELATED WORK
For the presented work the following research topics on tagging are
relevant:

4.1 Analysis of Social Tagging Systems
The first analysis of social tagging systems was done by Golder
and Huberman [13]. In this work the authors show stable usage
patterns within collaborative tagging systems and introduce an ini-
tial model of collaborative tagging. Subsequent work by Marlow et
al. [23] introduces another model which gives insight into a simple
taxonomy of incentives and contribution models within these sys-
tems. Hammond et al. [15] give a high level overview of different
social tagging tools and examine various aspects such as audience
and types of tagged media.

4.2 Navigation in Social Tagging Systems
As previously mentioned Chi and Mytkowicz [6] studied Delicious
using information theory (entropy) and found that the system be-
comes harder to navigate over time. The main reason for this is
the small increase of tag vocabulary as opposed the vast growth of
tagging information in these systems. In previous work [17] we an-
alyzed tag clouds as means to browse tagging systems and showed
that tag-resource networks have sufficient navigation properties in
theory but also illustrated that user interface restrictions (such as
pagination) spoil efficient navigation for all practical purposes.

4.3 Tag Semantics
In previous work [4] we compared different methods (such as net-
work centrality, subsumption etc.) to measure the generality of tags
in social systems. In [21] we showed that semantics within a so-
cial tagging system are heavily influenced by the users’ tag usage.
Users who are more verbose in the process of social tagging are
better candidates for the construction of semantic structures out of
folksonomies.

4.4 Creating Hierarchies from Social Tagging
Data

Heymann et al. [18] converted a large corpus of tags annotating
objects into a navigable hierarchical taxonomy of tags by evaluat-
ing the centrality of the tags in a similarity graph. In another work
Solskinnsbakk et al. [27] constructed tag hierarchies using associa-
tion rule mining of the corresponding tag set. Kiu and Tsui [19]
introduced TaxoFolk - an algorithm which integrates a tags and

resources into a taxonomy by applying various data-mining tech-
niques such as formal concept analysis. In another work Plangpra-
sopchok [24] propose a hierarchy generation algorithm based on an
examination of user-defined relations within the system. Schmitz [26]
gives insight into an algorithm that induces an ontology from tags
in the Flickr system using a subsumption-based model. However,
contrary to our work, none of these previous approaches examine
the implications the resulting structures have on the navigability of
the system.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a novel approach to enhance the nav-
igability of social tagging system trough tag-resource taxonomies.
We showed that tag taxonomies are in general well suited for find-
ing related tag concepts, but perform worse in finding resources
in an efficient number of clicks. By introducing the notation of
the so-called tag-resource taxonomies we presented a method that
tackles this issue. We illustrated in theory that with the approach of
a tag-resource taxonomy it is possible to navigate to resources effi-
ciently. Additionally to these findings, we evaluated the approach
empirically and found that tag-resource taxonomies perform on a
semantic level nearly as good or even better than other popular tag
taxonomy approaches.

Thus, with the notation of tag-resource taxonomies we have intro-
duced a novel hierarchical method that allows the user to navigate
the resources in the tagging system in an efficient and semantically
appropriate manner. To the best of our knowledge, this is the first
work that describes such an efficient hierarchical navigation tool on
the basis of tag-resource hierarchies.

In the future we plan to integrate a prototype visualization of tag-
resource sub taxonomies into each article page of the Austria Fo-
rum in the form of tag trails in order to support the user in the
process of navigating the system.

6. ACKNOWLEDGMENTS
We would like to thank Markus Muhr for helping us with the gen-
eration of the Affinity and K-Means tag taxonomies.

This work is funded by - BMVIT - the Federal Ministry for Trans-
port, Innovation and Technology, program line Forschung, Inno-
vation und Technologie für Informationstechnologie, project NAV-
TAG – Improving the navigability of tagging systems and the Eu-
ropean Commission as part of the FP7 Marie Curie IAPP project
TEAM (grant no. 251514).

7. REFERENCES
[1] S. Alexaki, V. Christophides, G. Karvounarakis,

D. Plexousakis, and K. Tolle. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In SemWeb,
2001.

[2] Austria-Forum. Das Österreichische Wissensnetz.
http://wwww.austria-lexikon.at, 2011. [Online;
accessed 2011-03-01].



[3] D. Benz, A. Hotho, and G. Stumme. Semantics made by you
and me: Self-emerging ontologies can capture the diversity
of shared knowledge. In Proc. of the 2nd Web Science
Conference (WebSci10), Raleigh, NC, USA, 2010. Web
Science Trust.

[4] D. Benz, C. Körner, A. Hotho, G. Stumme, and
M. Strohmaier. One tag to bind them all : Measuring term
abstractness in social metadata. In Proceedings of the 8th
Extended Semantic Web Conference (ESWC 2011),
Heraklion, Crete, May 2011.

[5] BibSonomy. BibSonomy: A blue social bookmark and
publication sharing system.
http://www.bibsonomy.org, 2011. [Online; accessed
2011-04-21].

[6] E. H. Chi and T. Mytkowicz. Understanding navigability of
social tagging systems. In proceedings of the SIGCHI
conference on Human Factors in Computing Systems
(CHI’07), 2007.

[7] E. H. Chi and T. Mytkowicz. Understanding the efficiency of
social tagging systems using information theory. In HT ’08:
Proceedings of the nineteenth ACM conference on Hypertext
and hypermedia, pages 81–88, New York, NY, USA, 2008.
ACM.

[8] CiteULike. CiteULike: Everyone’s library.
http://www.citeulike.org, 2011. [Online; accessed
2011-04-21].

[9] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data. SIAM Rev., 51:661–703,
November 2009.

[10] K. Dellschaft and S. Staab. On how to perform a gold
standard based evaluation of ontology learning. In
Proceedings of ISWC-2006 International Semantic Web
Conference, Athens, GA, USA, November 2006. Springer.

[11] I. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very
large document collections. In Data Mining for Scientific and
Engineering Applications. Kluwer Academic Publishers,
Heidelberg, 2001.

[12] B. J. J. Frey and D. Dueck. Clustering by passing messages
between data points. Science, 315(5814):972–976, January
2007.

[13] S. A. Golder and B. A. Huberman. The structure of
collaborative tagging systems. Journal of Information
Science, 32(2):198–208, 2006.

[14] H. Halpin, V. Robu, and H. Shepherd. The complex
dynamics of collaborative tagging. In Proceedings of the
16th international conference on World Wide Web, WWW
’07, pages 211–220, New York, NY, USA, 2007. ACM.

[15] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social
bookmarking tools (i): A general review. D-Lib Magazine,
11(4), 2005.

[16] D. Helic, M. Strohmaier, C. Trattner, M. Muhr, and
K. Lermann. Pragmatic evaluation of folksonomies. In Proc.
of the 21st International World Wide Web conference, WWW
’11, New York, NY, USA, 2011. ACM.

[17] D. Helic, C. Trattner, M. Strohmaier, and K. Andrews. Are
tag clouds useful for navigation? a network-theoretic
analysis. International Journal of Social Computing and
Cyber-Physical Systems, 2011.

[18] P. Heymann and H. Garcia-Molina. Collaborative creation of
communal hierarchical taxonomies in social tagging systems.
Technical Report 2006-10, Stanford InfoLab, April 2006.

[19] C.-C. Kiu and E. Tsui. Taxofolk: A hybrid
taxonomy-folksonomy structure for knowledge classification
and navigation. Expert Systems with Applications,
38(5):6049 – 6058, 2011.

[20] J. M. Kleinberg. Small-world phenomena and the dynamics
of information. In Advances in Neural Information
Processing Systems (NIPS) 14, page 2001, Cambridge, MA,
USA, 2001. MIT Press.

[21] C. Körner, D. Benz, M. Strohmaier, A. Hotho, and
G. Stumme. Stop thinking, start tagging - tag semantics
emerge from collaborative verbosity. In Proc. of the 19th
International World Wide Web Conference (WWW 2010),
Raleigh, NC, USA, Apr. 2010. ACM.

[22] A. Mädche and S. Staab. Measuring similarity between
ontologies. In Proc. Of the European Conference on
Knowledge Acquisition and Management - EKAW-2002.
Madrid, Spain, October 1-4, 2002, volume 2473 of
LNCS/LNAI, Heidelberg, 2002. Springer.

[23] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06,
tagging paper, taxonomy, flickr, academic article, to read. In
Proc. Seventeenth Conference on Hypertext and Hypermedia
(Hypertext 2006), HT’06, pages 31–40, USA, NY, 2006.
ACM.

[24] A. Plangprasopchok and K. Lerman. Constructing
folksonomies from user-specified relations on flickr. In Proc.
of 18th International World Wide Web Conference, WWW
’09, May 2009.

[25] A. Plangprasopchok, K. Lerman, and L. Getoor. From
saplings to a tree: Integrating structured metadata via
relational affinity propagation. In Proceedings of the AAAI
workshop on Statistical Relational AI, Menlo Park, CA,
USA, July 2010. AAAI.

[26] P. Schmitz. Inducing ontology from flickr tags. In
Proceedings of the Workshop on Collaborative Tagging at
WWW2006, Edinburgh, Scotland, May 2006.

[27] G. Solskinnsbakk and J. Gulla. A hybrid approach to
constructing tag hierarchies. In On the Move to Meaningful
Internet Systems, OTM 2010, volume 6427 of Lecture Notes
in Computer Science, pages 975–982. Springer Berlin /
Heidelberg, 2010.

[28] C. Trattner, I. Hasani-Mavriqi, D. Helic, and H. Leitner. The
austrian way of wiki(pedia)!: development of a structured
wiki-based encyclopedia within a local austrian context. In
Proceedings of the 6th International Symposium on Wikis
and Open Collaboration, WikiSym ’10, pages 1–10, New
York, NY, USA, 2010. ACM.

[29] C. Trattner and D. Helic. Linking related documents:
combining tag clouds and search queries. In Proceedings of
the 10th international conference on Web engineering,
ICWE’10, pages 486–489, Berlin, Heidelberg, 2010.
Springer-Verlag.

[30] C. Trattner, M. Strohmaier, D. Helic, and K. Andrews. The
benefits and limitations of tag clouds as a tool for social
navigation. Technical Report – IICM, Graz University of
Technology, 2011.


